Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron‐sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials[1]and the laser cooling of atoms.[2,3]More recent development has led to nano‐optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real‐time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano‐optical tweezers and their current and future applications.
The intensity distribution of a holographically-projected optical trap can be tailored to the physical properties of the particles it is intended to trap. Dynamic optimization is especially desirable for manipulating dark-seeking particles that are repelled by conventional optical tweezers, and even more so when dark-seeking particles coexist in the same system as light-seeking particles. We address the need for dexterous manipulation of dark-seeking particles by introducing a class of “dark” traps created from the superposition of two out-of-phase Gaussian modes with different waist diameters. Interference in the difference-of-Gaussians (DoG) trap creates a dark central core that is completely surrounded by light and therefore can trap dark-seeking particles rigidly in three dimensions. DoG traps can be combined with conventional optical tweezers and other types of traps for use in heterogeneous samples. The ideal hologram for a DoG trap being purely real-valued, we introduce a general method based on the Zernike phase-contrast principle to project real-valued holograms with the phase-only diffractive optical elements used in standard holographic optical trapping systems. We demonstrate the capabilities of DoG traps (and Zernike holograms) through experimental studies on high-index, low-index and absorbing colloidal particles dispersed in fluid media.
more » « less- NSF-PAR ID:
- 10531186
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 13
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 23568
- Size(s):
- Article No. 23568
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Abstract Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit (FoM) for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this FoM and an optimization algorithm, we identified the optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap.more » « less
-
We propose engineering optical traps over plasmonic surfaces and precisely controlling the trap position with an external bias by inducing in-plane nonreciprocity on the surface. The platform employs an incident Gaussian beam to polarize targeted nanoparticles, and exploits the interplay between nonreciprocal and spin-orbit lateral recoil forces to construct stable optical traps and manipulate their position within the surface. To model this process, we develop a theoretical framework based on the Lorentz force combined with nonreciprocal Green’s functions and apply it to calculate the trapping potential. Rooted on this formalism, we explore the exciting possibilities offered by graphene to engineer stable optical traps using low-power laser beams in the mid-IR and to manipulate the trap position in a continuous manner by applying a longitudinal drift bias. Nonreciprocal metasurfaces may open new possibilities to trap, assemble and manipulate nanoparticles and overcome many challenges faced by conventional optical tweezers while dealing with nanoscale objects.
-
Abstract Due to their high spatial resolution and precise application of force, optical traps are widely used to study the mechanics of biomolecules and biopolymers at the single‐molecule level. Recently, core–shell particles with optical properties that enhance their trapping ability represent promising candidates for high‐force experiments. To fully harness their properties, methods for functionalizing these particles with biocompatible handles are required. Here, a straightforward synthesis is provided for producing functional titania core–shell microparticles with proteins and nucleic acids by adding a silane–thiol chemical group to the shell surface. These particles display higher trap stiffness compared to conventional plastic beads featured in optical tweezers experiments. These core–shell microparticles are also utilized in biophysical assays such as amyloid fiber pulling and actin rupturing to demonstrate their high‐force applications. It is anticipated that the functionalized core–shells can be used to probe the mechanics of stable proteins structures that are inaccessible using current trapping techniques.
-
Abstract Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques.more » « less