Guaiacol, present in wood smoke, readily forms secondary organic aerosol (SOA), and, in the aqueous phase, brown carbon (BrC) species. Here, BrC is produced in an illuminated chamber containing guaiacol(g), HOOH(g) as an OH radical source, and either deliquesced salt particles or guaiacol SOA at 50% relative humidity. BrC production slows without an OH source (HOOH), likely due to low levels of radical generation by photosensitization, perhaps involving surface-adsorbed guaiacol and dissolved oxygen. With or without HOOH, BrC mass absorption coefficients at 365 nm generated by the guaiacol + OH reaction reach a maximum at ~6 h of atmospheric OH exposure, after which photobleaching becomes dominant. In the presence of soluble iron but no HOOH, more BrC is produced, likely due to insoluble polymer production observed in previous studies. However, with both soluble iron and HOOH (enabling Fenton chemistry), significantly less SOA and BrC are produced due to very high oxidation rates, and the average SOA carbon oxidation state reaches 2, indicating carboxylate products like oxalate. These results indicate that SOA and BrC formation by guaiacol photooxidation can take place over a wider range of atmospheric conditions than previously thought, and that the effects of iron(II) depend on HOOH. Multiphase guaiacol photooxidation likely makes a significant contribution to producing highly oxidized SOA material in smoke plumes.
more »
« less
Brown Carbon Aerosol Formation by Multiphase Catechol Photooxidation in the Presence of Soluble Iron
Catechol (1,2-benzenediol), a common phenolic species emitted during biomass burning, is both redox active and metal chelating. When oxidized by OH radicals in the aqueous phase, it rapidly forms brown carbon (BrC). Here, we report chamber studies of the multiphase chemistry of catechol using HOOH as an OH radical source, soluble iron, simulated sunlight, and either deliquesced or solid-phase seed particles. BrC of remarkable similarity (MAC365 = 1.7 ±0.2 m2 g-1, “medium-BrC” category) was produced whenever gas-phase catechol was photolyzed in the chamber, with or without the presence of an OH radical source, soluble iron, or deliquesced aerosol. The speed and quantity of BrC formation varied, however. While BrC production was slower in the absence of an OH radical source, multiple lines of evidence suggest that OH generation via photosensitization by surface-adsorbed catechol can still generate BrC. Fenton chemistry actively occurred in surface-adsorbed water layers even below the seed particle deliquescence point, leading to significant production of gas-phase benzoquinone. Ratios of BrC and secondary organic aerosol (SOA) relative to catechol concentrations were highest in the presence of trace amounts of soluble iron, HOOH, and simulated sunlight, indicating that photo-Fenton chemistry contributed substantially to BrC and SOA formation by catechol. Finally, we observed that BrC and SOA formation by catechol / photo-Fenton chemistry can occur efficiently even at 40% RH. These results are consistent with catechol being a major source of secondary BrC in biomass burning plumes, even at moderate relative humidity.
more »
« less
- Award ID(s):
- 2218491
- PAR ID:
- 10531330
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS ES&T Air
- Volume:
- 1
- Issue:
- 6
- ISSN:
- 2837-1402
- Page Range / eLocation ID:
- 785 to 793
- Subject(s) / Keyword(s):
- Fenton, surface activity, aqueous processing, smoke plume, photochemistry, secondary organic aerosol
- Format(s):
- Medium: X Size: 795 kB Other: PDF/A
- Size(s):
- 795 kB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Brown carbon (BrC) is an important component of biomass-burning (BB) emissions that impacts Earth's radiation budget. BB directly emits primary BrC as well as gaseous phenolic compounds (ArOH), which react in the gas and aqueous phases with oxidants – such as hydroxyl radical (OH) and organic triplet excited states (3C∗) – to form light-absorbing secondary organic aerosol (SOA). These reactions in atmospheric aqueous phases, such as cloud/fog drops and aerosol liquid water (ALW), form aqueous SOA (aqSOA), i.e., low-volatility, high-molecular-weight products. While these are important routes of aqSOA formation, the light absorption and lifetimes of the BrC formed are poorly characterized. To study these aspects, we monitored the formation and loss of light absorption by aqSOA produced by reactions of six highly substituted phenols with OH and 3C∗. While the parent phenols absorb very little tropospheric sunlight, they are oxidized to aqSOA that can absorb significant amounts of sunlight. The extent of light absorption by the aqSOA depends on both the ArOH precursor and oxidant: more light-absorbing aqSOA is formed from more highly substituted phenols and from triplet reactions rather than OH. Under laboratory conditions, extended reaction times in OH experiments diminish sunlight absorption by aqSOA on timescales of hours, while extended reaction times in 3C∗ experiments reduce light absorption much more slowly. Estimated lifetimes of light-absorbing phenolic aqSOA range from 3 to 17 h in cloud/fog drops, where OH is the major sink, and from 0.7 to 8 h in ALW, where triplet excited states are the major sink.more » « less
-
Surprisingly robust photochemistry in subarctic particles during winter: evidence from photooxidantsAbstract. Subarctic cities notoriously experience severe winter pollution episodes with fine particle (PM2.5) concentrations above 35 µg m−3, the US Environmental Protection Agency (EPA) 24 h standard. While winter sources of primary particles in Fairbanks, Alaska, have been studied, the chemistry driving secondary particle formation is elusive. Biomass burning is a major source of wintertime primary particles, making the PM2.5 rich in light-absorbing brown carbon (BrC). When BrC absorbs sunlight, it produces photooxidants – reactive species potentially important for secondary sulfate and secondary organic aerosol formation – yet photooxidant measurements in high-latitude PM2.5 remain scarce. During the winter of 2022 Alaskan Layered Pollution And Chemical Analysis (ALPACA) field campaign in Fairbanks, we collected PM filters, extracted the filters into water, and exposed the extracts to simulated sunlight to characterize the production of three photooxidants: oxidizing triplet excited states of BrC, singlet molecular oxygen, and hydroxyl radical. Next, we used our measurements to model photooxidant production in highly concentrated aerosol liquid water. While conventional wisdom indicates photochemistry is limited during high-latitude winters, we find that BrC photochemistry is significant: we predict high triplet and singlet oxygen daytime particle concentrations up to 2×10-12 and 3×10-11 M, respectively, with moderate hydroxyl radical concentrations up to 5×10-15 M. Although our modeling predicts that triplets account for 0.4 %–10 % of daytime secondary sulfate formation, particle photochemistry cumulatively dominates, generating 76 % of daytime secondary sulfate formation, largely due to in-particle hydrogen peroxide, which contributes 25 %–54 %. Finally, we estimate triplet production rates year-round, revealing the highest rates in late winter when Fairbanks experiences severe pollution and in summer when wildfires generate BrC.more » « less
-
Abstract Furans are a major class of volatile organic compounds emitted from biomass burning. Their high reactivity with atmospheric oxidants leads to the formation of secondary organic aerosol (SOA), including secondary brown carbon (BrC) that can affect global climate via interactions with solar radiation. Here, we investigate the optical properties and chemical composition of SOA generated via photooxidation of furfural, 2‐methylfuran, and 3‐methylfuran under dry (RH < 5%) and humid (RH ∼ 50%) conditions in the presence of nitrogen oxides (NOx) and ammonium sulfate seed aerosol. Dry furfural oxidation has the greatest BrC formation, including reduced nitrogen‐containing organic compounds (NOCs) in SOA, which are dominated by amines and amides formed from reactions between carbonyls and ammonia/ammonium. Based on the products detected, we propose novel formation pathways of NOCs in furfural photooxidation, which can contribute to BrC via accretion reactions during the photochemical aging of biomass burning plumes.more » « less
-
Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes – such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation – are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10−5 s−1, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high-OH conditions. Moreover, we propose that autoxidation may alternatively resolve some or all of the measurement–model discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established for α-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility, and vapor–wall deposition in chamber experiments is illustrated.more » « less
An official website of the United States government

