skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VisU-HydRA: A Computational Toolbox for Groundwater Contaminant Transport to Support Risk-Based Decision Making
Obtaining accurate and deterministic predictions of the risks associated with the presence of contaminants in aquifers is an illusive goal given the presence of heterogeneity in hydrological properties and limited site characterization data. For such reasons, a probabilistic framework is needed to quantify the risks in groundwater systems. In this work, we present a computational toolboxVisU-HydRAthat aims to statistically characterize and visualize metrics that are relevant in risk analysis with the ultimate goal of supporting decision making. TheVisU-HydRAcomputational toolbox is an open-source Python package that can be linked to a series of existing codes such as MODFLOW and PAR2, a GPU-accelerated transport simulator. To illustrate the capabilities of the computational toolbox, we simulate flow and transport in a heterogeneous aquifer within a Monte Carlo framework. The computational toolbox allows to compute the probability of a contaminant’s concentration exceeding a safe threshold value as well as the uncertainty associated with the loss of resilience of the aquifer. To ensure consistency and a reproducible workflow, a step-by-step tutorial is provided and available on a GitHub repository.  more » « less
Award ID(s):
1654009
PAR ID:
10531344
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose HYDRA-C, a design-time evaluation framework for integrating monitoring mechanisms in multicore real-time systems (RTS). Our goal is to ensure that security (or other monitoring) mechanisms execute in a "continuous" manner - i.e., as often as possible, across cores. This is to ensure that any such mechanisms run with few interruptions, if any. HYDRA-C is intended to allow designers of RTS to integrate monitoring mechanisms without perturbing existing timing properties or execution orders. We demonstrate the framework using a proofof-concept implementation with intrusion detection mechanisms as security tasks. We develop and use both, (a) a custom intrusion detection system (IDS) as well as (b) Tripwire - an open source data integrity checking tool. We compare the performance of HYDRA-C with a state-of-the-art multicore RT security integration approach and find that our method does not impact the schedulability and, on average, can detect intrusions 19.05% faster without impacting the performance of RT tasks. 
    more » « less
  2. Abstract We introduce an end-to-end computational framework that allows for hyperparameter optimization using theDeepHyperlibrary, accelerated model training, and interpretable AI inference. The framework is based on state-of-the-art AI models includingCGCNN,PhysNet,SchNet,MPNN,MPNN-transformer, andTorchMD-NET. We employ these AI models along with the benchmarkQM9,hMOF, andMD17datasets to showcase how the models can predict user-specified material properties within modern computing environments. We demonstrate transferable applications in the modeling of small molecules, inorganic crystals and nanoporous metal organic frameworks with a unified, standalone framework. We have deployed and tested this framework in the ThetaGPU supercomputer at the Argonne Leadership Computing Facility, and in the Delta supercomputer at the National Center for Supercomputing Applications to provide researchers with modern tools to conduct accelerated AI-driven discovery in leadership-class computing environments. We release these digital assets as open source scientific software in GitLab, and ready-to-use Jupyter notebooks in Google Colab. 
    more » « less
  3. Abstract Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. 
    more » « less
  4. Abstract Reliable studies of the long-term dynamics of planetary systems require numerical integrators that are accurate and fast. The challenge is often formidable because the chaotic nature of many systems requires relative numerical error bounds at or close to machine precision (∼10−16, double-precision arithmetic); otherwise, numerical chaos may dominate over physical chaos. Currently, the speed/accuracy demands are usually only met by symplectic integrators. For example, the most up-to-date long-term astronomical solutions for the solar system in the past (widely used in, e.g., astrochronology and high-precision geological dating) have been obtained using symplectic integrators. However, the source codes of these integrators are unavailable. Here I present the symplectic integratororbitN(lean version 1.0) with the primary goal of generating accurate and reproducible long-term orbital solutions for near-Keplerian planetary systems (here the solar system) with a dominant massM0. Among other features,orbitN-1.0includesM0’s quadrupole moment, a lunar contribution, and post-Newtonian corrections (1PN) due toM0(fast symplectic implementation). To reduce numerical round-off errors, Kahan compensated summation was implemented. I useorbitNto provide insight into the effect of various processes on the long-term chaos in the solar system. Notably, 1PN corrections have the opposite effect on chaoticity/stability on a 100 Myr versus Gyr timescale. For the current application,orbitNis about as fast as or faster (factor 1.15–2.6) than comparable integrators, depending on hardware.11The orbitN source code (C) is available athttp://github.com/rezeebe/orbitN. 
    more » « less
  5. Abstract In this paper, we introduceSuperLite, an open-source Monte Carlo radiation transport code designed to produce synthetic spectra for astrophysical transient phenomena affected by circumstellar interaction.SuperLiteutilizes Monte Carlo methods for semi-implicit, semirelativistic radiation transport in high-velocity shocked outflows, employing multigroup structured opacity calculations. The code enables rapid post-processing of hydrodynamic profiles to generate high-quality spectra that can be compared with observations of transient events, including superluminous supernovae, pulsational pair-instability supernovae, and other peculiar transients. We present the methods employed inSuperLiteand compare the code’s performance to that of other radiative transport codes, such asSuperNuand CMFGEN. We show thatSuperLitehas successfully passed standard Monte Carlo radiation transport tests and can reproduce spectra of typical supernovae of Type Ia, Type IIP, and Type IIn. 
    more » « less