skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A weaker notion of the finite factorization property
An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.  more » « less
Award ID(s):
2218846
PAR ID:
10531368
Author(s) / Creator(s):
; ;
Publisher / Repository:
KoreaScience
Date Published:
Journal Name:
Communications of the Korean Mathematical Society
Volume:
39
Issue:
2
ISSN:
1225-1763
Page Range / eLocation ID:
313-329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract LetMbe a cancellative and commutative (additive) monoid. The monoidMis atomic if every non-invertible element can be written as a sum of irreducible elements, which are also called atoms. Also,Msatisfies the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals (under inclusion) becomes constant from one point on. In the first part of this paper, we characterize torsion-free monoids that satisfy the ACCP as those torsion-free monoids whose submonoids are all atomic. A submonoid of the nonnegative cone of a totally ordered abelian group is often called a positive monoid. Every positive monoid is clearly torsion-free. In the second part of this paper, we study the atomic structure of certain classes of positive monoids. 
    more » « less
  2. The interplay between local consistency and global consistency has been the object of study in several different areas, including probability theory, relational databases, and quantum information. For relational databases, Beeri, Fagin, Maier, and Yannakakis showed that a database schema is acyclic if and only if it has the local-to-global consistency property for relations, which means that every collection of pairwise consistent relations over the schema is globally consistent. More recently, the same result has been shown under bag semantics. In this paper, we carry out a systematic study of local vs. global consistency for relations over positive commutative monoids, which is a common generalization of ordinary relations and bags. Let K be an arbitrary positive commutative monoid. We begin by showing that acyclicity of the schema is a necessary condition for the local-to-global consistency property for K-relations to hold. Unlike the case of ordinary relations and bags, however, we show that acyclicity is not always sufficient. After this, we characterize the positive commutative monoids for which acyclicity is both necessary and sufficient for the local-to-global consistency property to hold; this characterization involves a combinatorial property of monoids, which we call the transportation property. We then identify several different classes of monoids that possess the transportation property. As our final contribution, we introduce a modified notion of local consistency of K-relations, which we call pairwise consistency up to the free cover. We prove that, for all positive commutative monoids K, even those without the transportation property, acyclicity is both necessary and sufficient for every family of K-relations that is pairwise consistent up to the free cover to be globally consistent. 
    more » « less
  3. Chabert, JL; Fontana, M; Frisch, S; Glaz, S; Johnson, K (Ed.)
    A semidomain is an additive submonoid of an integral domain that is closed under multiplication and contains the identity element. Although factorizations and divisibility in atomic domains have been systematically investigated for more than 30 years, the same aspects in the more general context of atomic semidomains have been considered just recently. Here we study subatomicity in the context of semidomains; that is, we study semidomains satisfying divisibility properties weaker than atomicity. We mostly focus on the Furstenberg property, which is due to P. Clark and motivated by the work of H. Furstenberg on the infinitude of primes, and the almost atomic and quasi-atomic properties, introduced by J. G. Boynton and J. Coykendall in the context of divisibility in integral domains. We investigate these three properties in the context of semidomains, paying special attention to whether they ascend from a semidomain to its polynomial and Laurent polynomial extensions. 
    more » « less
  4. Abstract A subsetSof an integral domainRis called a semidomain provided that the pairs ( S , + ) and ( S , ) are semigroups with identities. The study of factorizations in integral domains was initiated by Anderson, Anderson, and Zafrullah in 1990, and this area has been systematically investigated since then. In this paper, we study the divisibility and arithmetic of factorizations in the more general context of semidomains. We are specially concerned with the ascent of the most standard divisibility and factorization properties from a semidomain to its semidomain of (Laurent) polynomials. As in the case of integral domains, here we prove that the properties of satisfying the ascending chain condition on principal ideals, having bounded factorizations, and having finite factorizations ascend in the class of semidomains. We also consider the ascent of the property of being atomic and that of having unique factorization (none of them ascends in general). Throughout the paper, we provide several examples aiming to shed some light upon the arithmetic of factorizations of semidomains. 
    more » « less
  5. Abstract Consider a pair of elementsfandgin a commutative ringQ. Given a matrix factorization offand another ofg, the tensor product of matrix factorizations, which was first introduced by Knörrer and later generalized by Yoshino, produces a matrix factorization of the sum$$f+g$$. We will study the tensor product ofd-fold matrix factorizations, with a particular emphasis on understanding when the construction has a non-trivial direct sum decomposition. As an application of our results, we construct indecomposable maximal Cohen–Macaulay and Ulrich modules over hypersurface domains of a certain form. 
    more » « less