skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using acoustic energy of vocalizations to monitor population size and phenology of anurans
As a species that lives at the land/water interface, the American bullfrog (Rana catesbeianus) serve as a bioindicator in many habitats, yet also invasive in many locations. Due to challenges with traditional monitoring approaches, there is a lack of fine-scale population and phenological data for bullfrogs. Passive acoustic monitoring (PAM) can provide a low-cost alternative with high-resolution data for monitoring vocal animals. Sexually mature male bullfrogs attract mates by calling from exclusive territories. These vocalizations can be used to explore bullfrog behavior, population size, and phenology. We describe the analysis framework and initial results from an project monitoring the vocal behavior of frogs in 25 ponds in southeastern New Hampshire during the reproductive season using acoustic arrays. By using an acoustic energy index (RMS amplitude), we can estimate numbers of frogs in ponds, determine timing of reproduction, and even document anthropogenic disturbance. Our results can lead to future uses of PAM to monitor population size and phenology and develop reliable long-term management and conservation strategies.  more » « less
Award ID(s):
2226886
PAR ID:
10531438
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of the Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
155
Issue:
3_Supplement
ISSN:
0001-4966
Page Range / eLocation ID:
A182 to A182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adélie penguins (Pygoscelis adeliae) are bioindicators for the rapidly changing Antarctic environment, making understanding their population dynamics and behavior of high research priority. However, collecting detailed population data throughout the breeding season on many colonies is difficult due to Antarctica’s harsh conditions and remote location. The colonial breeding ecology of Adélie penguins has led to the evolution of a highly vocal species with individualized calls, making them well-suited for passive acoustic monitoring (PAM) with autonomous recording. PAM units can potentially provide an easily deployable and scalable way to collect fine-scale data on population estimates and breeding phenology. Here I present a framework for using acoustic indices to monitor phenology of dense penguin colonies even under high wind conditions. I evaluate the relationship between acoustic indices such as RMS amplitude and penguin colony size between distinct breeding stages (incubation, guard, crèche, and fledge) on Torgersen and Humble Islands in the West Antarctic Peninsula with an automated pipeline implemented in R. Using PAM to interpret penguin vocalizations for population size and breeding phenology estimates could lead to the development of a real-time remote monitoring system over a large spatial footprint, revealing Adélie penguin responses to climate change. 
    more » « less
  2. Migratory seabirds are vulnerable to decline due to climate change and anthropogenic disturbances. Common terns (Sterna hirundo) are highly vocal colonial seabirds that serve as bioindicators of their foraging grounds throughout their migratory range. Historically, monitoring colonial seabirds is invasive and time-consuming, and traditional acoustic approaches are complicated by high amounts of call overlap. Monitoring the behavioral ramifications of disturbance, as well as overall colony size and health, is crucial to implementing effective management decisions. However, methods are needed to do so efficiently and with minimal disturbance. In this study, we demonstrate that population size, demographics, and behavior can be assessed acoustically through changes in acoustic energy across varying temporal scales. To do this, we compared acoustic energy to in-person observations of nest density, chick-hatching, and investigator disturbance. We found that trends in acoustic energy align with observations of nest density, and the distribution of acoustic energy across frequency bands is indicative of colony demographics. Furthermore, we found a significant relationship between acoustic energy and investigator disturbance within 20 meters of an acoustic recorder. Overall, our findings suggest that colony-wide trends in population size, demographics, and behavior can be monitored via acoustic energy without the time-consuming analysis of individual calls. 
    more » « less
  3. Acoustic indices are an efficient method for monitoring dense aggregations of vocal animals but require understanding the acoustic ecology of the species under examination. The present understanding of avian behavior and vocal development is primarily derived from the research of songbirds (Passeriformes). However, given that behavior and environment can differ greatly among bird orders, passerine birdsong may be insufficient to define the vocal ontogeny of non-passerine birds. Like many colonial nesting seabirds, the Adélie penguin (Pygoscelis adeliae) is adapted to loud and congested environments with limited cues to identify kinship within aggregations of conspecifics. In addition to physical or geographical cues to identify offspring, adult P. adeliae rely on vocal modulation. Numerous studies have been conducted on mutual vocal modulations in mature P. adeliae, but limited research has explored the vocal repertoire of the chicks and how their vocalizations evolve over time. Using the deep learning-based system, DeepSqueak, this study characterized the vocal ontogeny of P. adeliae chicks in the West Antarctic Peninsula to aid in autonomously tracking their age. Understanding the phenological communication patterns of vocal-dependent seabirds can help measure the impact of climate change on this indicator species through non-invasive methods. 
    more » « less
  4. null (Ed.)
    Communication systems often include a variety of components, including those that span modalities, which may facilitate detection and decision-making. For example, female tungara frogs and fringe-lipped bats generally rely on acoustic mating signals to find male tungara frogs in a mating or foraging context, respectively. However, two additional cues (vocal sac inflation and water ripples) can enhance detection and choice behavior. To date, we do not know the natural variation and covariation of these three components. To address this, we made detailed recordings of calling males, including call amplitude, vocal sac volume and water ripple height, in 54 frogs (2430 calls). We found that all three measures correlated, with the strongest association between the vocal sac volume and call amplitude. We also found that multimodal models predicted the mass of calling males better than unimodal models. These results demonstrate how multimodal components of a communication system relate to each other and provide an important foundation for future studies on how receivers integrate and compare complex displays. 
    more » « less
  5. For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For tu´ngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise. 
    more » « less