Abstract Crustaceans comprise an ecologically and morphologically diverse taxonomic group. They are typically considered resilient to many environmental perturbations found in marine and coastal environments, due to effective physiological regulation of ions and hemolymph pH, and a robust exoskeleton. Ocean acidification can affect the ability of marine calcifying organisms to build and maintain mineralized tissue and poses a threat for all marine calcifying taxa. Currently, there is no consensus on how ocean acidification will alter the ecologically relevant exoskeletal properties of crustaceans. Here, we present a systematic review and meta‐analysis on the effects of ocean acidification on the crustacean exoskeleton, assessing both exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical resistance and cuticle thickness). Our results suggest that the effect of ocean acidification on crustacean exoskeletal properties varies based upon seawaterpCO2and species identity, with significant levels of heterogeneity for all analyses. Calcium and magnesium content was significantly lower in animals held atpCO2 levels of 1500–1999 µatm as compared with those under ambientpCO2. At lowerpCO2 levels, however, statistically significant relationships between changes in calcium and magnesium content within the same experiment were observed as follows: a negative relationship between calcium and magnesium content atpCO2of 500–999 µatm and a positive relationship at 1000–1499 µatm. Exoskeleton biomechanics, such as resistance to deformation (microhardness) and shell strength, also significantly decreased underpCO2regimes of 500–999 µatm and 1500–1999 µatm, indicating functional exoskeletal change coincident with decreases in calcification. Overall, these results suggest that the crustacean exoskeleton can be susceptible to ocean acidification at the biomechanical level, potentially predicated by changes in ion content, when exposed to high influxes of CO2. Future studies need to accommodate the high variability of crustacean responses to ocean acidification, and ecologically relevant ranges ofpCO2conditions, when designing experiments with conservation‐level endpoints. 
                        more » 
                        « less   
                    
                            
                            Upwelling‐level acidification and pH/ pCO2 variability moderate effects of ocean acidification on brain gene expression in the temperate surfperch, Embiotoca jacksoni
                        
                    
    
            Acidification‐induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2. In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish,Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight‐day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1752600
- PAR ID:
- 10531540
- Publisher / Repository:
- John Wiley & Sons Ltd.
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 31
- Issue:
- 18
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- 4707 to 4725
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Increases in atmospheric CO2have led to more CO2entering the world’s oceans, decreasing the pH in a process called ’ocean acidification’. Low pH has been linked to impacts on macroalgal growth and stress, which can alter palatability to herbivores. Two common and ecologically important macroalgal species from the western Antarctic Peninsula, the unpalatableDesmarestia menziesiiand the palatablePalmaria decipiens, were maintained under three pH treatments: ambient (pH 8.1), near future (7.7) and distant future (7.3) for 52 days and 18 days, respectively. Discs ofP. decipiensor artificial foods containing extracts ofD. menziesiifrom each treatment were presented to the amphipodGondogeneia antarcticain feeding choice experiments. Additionally,G. antarcticaexposed to the different treatments for 55 days were used in a feeding assay with untreatedP. decipiens. ForD. menziesii, extracts from the ambient treatment were eaten significantly more by weight than the other treatments. Similarly,P. decipiensdiscs from the ambient and pH 7.7 treatments were eaten more than those from the pH 7.3 treatment. There was no significant difference in the consumption by treatedG. antarctica. These results suggest that ocean acidification may decrease the palatability of these macroalgae to consumers but not alter consumption byG. antarctica.more » « less
- 
            The pH of the world’s oceans has decreased since the Industrial Revolution due to the oceanic uptake of increased atmospheric CO2in a process called ocean acidification. Low pH has been linked to negative impacts on the calcification, growth, and survival of calcifying invertebrates. Along the Western Antarctic Peninsula, dominant brown macroalgae often shelter large numbers of diverse invertebrate mesograzers, many of which are calcified. Mesograzer assemblages in this region are often composed of large numbers of amphipods which have key roles in Antarctic macroalgal communities. Understanding the impacts of acidification on amphipods is vital for understanding how these communities will be impacted by climate change. To assess how long-term acidification may influence the survival of different members in these assemblages, mesograzers, particularly amphipods, associated with the brown algaDesmarestia menziesiiwere collected from the immediate vicinity of Palmer Station, Antarctica (S64°46′, W64°03′) in January 2020 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.1), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 52 days then enumerated. Total assemblage number and the relative proportion of each species in the assemblage were found to be similar across the pH treatments. These results suggest that amphipod assemblages associated withD. menziesiimay be resistant to long-term exposure to decreased pH.more » « less
- 
            An increase in anthropogenic carbon dioxide is driving oceanic chemical shifts resulting in a long-term global decrease in ocean pH, colloquially termed ocean acidification (OA). Previous studies have demonstrated that OA can have negative physiological consequences for calcifying organisms, especially during early life-history stages. However, much of the previous research has focused on static exposure to future OA conditions, rather than variable exposure to elevatedpCO2, which is more ecologically relevant for nearshore species. This study examines the effects of OA on embryonic and larval Pacific razor clams (Siliqua patula), a bivalve that produces a concretion during early shell development. Larvae were spawned and cultured over 28 days under threepCO2treatments: a static highpCO2of 867 μatm, a variable, dielpCO2of 357 to 867 μatm, and an ambientpCO2of 357 μatm. Our results indicate that the calcium carbonate polymorphism of the concretion phase ofS. patulawas amorphous calcium carbonate which transitioned to vaterite during the advanced D-veliger stage, with a final polymorphic shift to aragonite in adults, suggesting an increased vulnerability to dissolution under OA. However, exposure to elevatedpCO2appeared to accelerate the transition of larvalS. patulafrom the concretion stage of shell development to complete calcification. There was no significant impact of OA exposure to elevated or variablepCO2conditions onS. patulagrowth or HSP70 and calmodulin gene expression. This is the first experimental study examining the response of a concretion producing bivalve to future predicted OA conditions and has important implications for experimentation on larval mollusks and bivalve management.more » « less
- 
            null (Ed.)There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH–low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    