skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: GLANCE – Gravitational Lensing Authenticator using Non-modelled Cross-correlation Exploration of Gravitational Wave Signals
ABSTRACT

Gravitational lensing is the phenomenon where the presence of matter (called a lens) bends the path of light-like trajectories travelling nearby. Similar to the geometric optics limit of electromagnetic waves, gravitational lensing of gravitational waves (GWs) can occur in geometric optics condition when GW wavelength is much smaller than the Schwarzschild radius of the lens, that is, $\lambda _{\mathrm{ GW}} \ll$R$^{\rm s}_{\rm lens}$. This is known as the strong lensing regime for which a multiple-image system with different magnifications and phase shifts is formed. We developed GLANCE, Gravitational Lensing Authenticator using Non-modelled Cross-correlation Exploration, a novel technique to detect strongly lensed GW signals. We demonstrate that cross-correlation between two noisy reconstruction of polarized GW signals shows a non-zero value when the signals are lensed counterparts. The relative strength between the signal cross-correlation and noise cross-correlation can quantify the significance of the event(s) being lensed. Since lensing biases the inference of source parameters, primarily the luminosity distance, a joint parameter estimation of the source and lens-induced parameters is incorporated using a Bayesian framework. We applied GLANCE to synthetic strong lensing data and showed that it can detect lensed GW signals and correctly constrain the injected source and lens parameters, even when one of the signals is below match-filtered threshold signal-to-noise ratio. This demonstrates GLANCE’s capability as a robust detection technique for strongly lensed GW signals and can distinguish between lensed and unlensed events.

 
more » « less
PAR ID:
10531580
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
532
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4842-4863
Size(s):
p. 4842-4863
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This work studies microlensing effects in strongly lensed gravitational wave (GW) signals corresponding to global minima images in galaxy-scale lenses. We find that stellar microlenses alone are unable to introduce noticeable wave effects in the global minima GW signals at strong lensing magnification $( {\mu})\lt 50$ with match value between unlensed and lensed GW signals being above ${\sim }99.5~{{\ \rm per \, cent}}$ in ${\sim }90~{{\ \rm per \, cent}}$ of systems implying that GW signals corresponding to global minima can be treated as reference signal to determine the amount of microlensing in other strongly lensed counterparts. Since the stellar microlenses introduce negligible wave effects in global minima, they can be used to probe the intermediate-mass black hole (IMBH) lenses in the galaxy lens. We show that the presence of an IMBH lens with mass in the range $[50,10^3]~{\rm M_\odot }$ such that the global minima lies within five Einstein radius of it, the microlensing effects at $f\lt 10^2$ Hz are mainly determined by the IMBH lens for ${\mu} \lt 50$. Assuming that a typical strong lensing magnification of 3.8 and high enough signal-to-noise ratio (in the range ${\simeq }[10, 30]$) to detect the microlensing effect in GW signals corresponding to global minima, with non-detection of IMBH-led microlensing effects in ${\simeq }15~({\simeq }150)$ lensed GW signals, we can rule out dark matter fraction $\gt 10~{{\ \rm per \, cent}}~(\gt 1~{{\ \rm per \, cent}})$ made of IMBH population inside galaxy lenses with mass values $\gt 150~{\rm M_\odot }$ with ${\sim }$90 per cent confidence. Although we have specifically used IMBHs as an example, the same analysis applies to any subhalo (or compact objects) with lensing masses (i.e. the total mass inside Einstein radius) satisfying the above criterion.

     
    more » « less
  2. Abstract

    Supermassive black hole binary systems (SMBHBs) should be the most powerful sources of gravitational waves (GWs) in the universe. Once pulsar timing arrays (PTAs) detect the stochastic GW background from their cosmic merger history, searching for individually resolvable binaries will take on new importance. Since these individual SMBHBs are expected to be rare, here we explore how strong gravitational lensing can act as a tool for increasing their detection prospects by magnifying fainter sources and bringing them into view. Unlike for electromagnetic waves, when the geometric optics limit is nearly always valid, for GWs the wave-diffraction-interference effects can become important when the wavelength of the GWs is larger than the Schwarzchild radius of the lens, i.e.,Mlens108fmHz1M. For the GW frequency range explored in this work, the geometric optics limit holds. We investigate GW signals from SMBHBs that might be detectable with current and future PTAs under the assumption that quasars serve as bright beacons that signal a recent merger. Using the black hole mass function derived from quasars and a physically motivated magnification distribution, we expect to detect a few strongly lensed binary systems out toz≈ 2. Additionally, for a range of fixed magnifications 2 ≤μ≤ 100, strong lensing adds up to ∼30 more detectable binaries for PTAs. Finally, we investigate the possibility of observing both time-delayed electromagnetic signals and GW signals from these strongly lensed binary systems—that will provide us with unprecedented multi-messenger insights into their orbital evolution.

     
    more » « less
  3. ABSTRACT

    Gravitational lensing describes the bending of the trajectories of light and gravitational waves due to the gravitational potential of a massive object. Strong lensing by galaxies can create multiple images with different overall amplifications, arrival times, and image types. If, furthermore, the gravitational wave encounters a star along its trajectory, microlensing will take place. Previously, it has been shown that the effects of microlenses on strongly-lensed type-I images could be negligible in practice, at least in the low magnification regime. In this work, we study the same effect on type-II strongly-lensed images by computing the microlensing amplification factor. As opposed to being magnified, type-II images are typically demagnified. Moreover, microlensing on top of type-II images induces larger mismatches with un-microlensed waveforms than type-I images. These results are broadly consistent with recent literature and serve to confirm the findings. In addition, we investigate the possibility of detecting and analysing microlensed signals through Bayesian parameter estimation with an isolated point mass lens template, which has been adopted in recent parameter estimation literature. In particular, we simulate gravitational waves microlensed by a microlens embedded in a galaxy potential near moderately magnified type-I and II macroimages, with variable lens masses, source parameters and macromagnifcations. Generally, an isolated point mass model could be used as an effective template to detect a type-II microlensed image but not for type-I images, demonstrating the necessity for more realistic microlensing search templates.

     
    more » « less
  4. ABSTRACT

    When travelling from their source to the observer, gravitational waves can get deflected by massive objects along their travel path. For a massive lens and a good source-lens alignment, the wave undergoes strong lensing, leading to several images with the same frequency evolution. These images are separated in time, magnified, and can undergo an overall phase shift. Searches for strongly lensed gravitational waves look for events with similar masses, spins, and sky location and linked through so-called lensing parameters. However, the agreement between these quantities can also happen by chance. To reduce the overlap between background and foreground, one can include lensing models. When doing realistic searches, one does not know which model is the correct one to be used. Using an incorrect model could lead to the non-detection of genuinely lensed events. In this work, we investigate how one can reduce the false alarm probability when searching for strongly lensed events. We focus on the impact of the addition of a model for the lens density profile and investigate the effect of potential errors in the modelling. We show that the risks of false alarm are high without the addition of a lens model. We also show that slight variations in the profile of the lens model are tolerable, but a model with an incorrect assumption about the underlying lens population causes significant errors in the identification process. We also suggest some strategies to improve confidence in the detection of strongly lensed gravitational waves.

     
    more » « less
  5. Abstract

    Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

     
    more » « less