Abstract Based on a template-matching method, we estimate the barium (Ba) abundances for stellar spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Medium-Resolution Spectroscopic Survey (MRS). The Ba abundances of 198,011 stars have been determined from MRS spectra with signal-to-noise ratios (S/N) > 40 combined with the stellar atmospheric parameters from the LAMOST Low-Resolution Spectroscopic Survey DR9 by the LAMOST Stellar Parameter Pipeline. The uncertainties in the Ba abundances from the LAMOST MRS spectra are less than 0.3 dex when S/N exceeds 40, which align closely with the results based on the high-resolution UVES spectra from the Gaia-ESO survey obtained by spectral synthesis. Further analysis of Ba abundances from repeated observations of the same stars reveals that random errors related to spectral quality remain below 0.3 dex at the same S/N, with a systematic overestimation for the low-S/N spectra. This extensive sample of stellar Ba abundances will enhance studies of thes-,i-, andr-processes, and deepen our understanding of the chemical-evolution history of the Milky Way.
more »
« less
Uncertainty of Line-of-sight Velocity Measurements of Faint Stars from Low- and Medium-resolution Optical Spectra
Abstract Massively multiplexed spectrographs will soon gather large statistical samples of stellar spectra. The accurate estimation of uncertainties on derived parameters, such as the line-of-sight velocityvlos, especially for spectra with low signal-to-noise ratios (S/Ns), is paramount. We generated an ensemble of simulated optical spectra of stars as if they were observed with low- and medium-resolution fiber-fed instruments on an 8 m class telescope, similar to the Subaru Prime Focus Spectrograph, and determinedvlosby fitting stellar templates to the simulated spectra. We compared the empirical errors of the derived parameters—calculated from an ensemble of simulations—to the asymptotic errors determined from the Fisher matrix, as well as from Monte Carlo sampling of the posterior probability. We confirm that the uncertainty ofvlosscales with the inverse square root of the S/N, but also show how this scaling breaks down at low S/N and analyze the error and bias caused by template mismatch. We outline a computationally optimized algorithm to fit multiexposure data and provide a mathematical model of stellar spectrum fitting that maximizes the so called significance, which allows for calculating the error from the Fisher matrix analytically. We also introduce the effective line count, and provide a scaling relation to estimate the errors ofvlosmeasurements based on stellar type. Our analysis covers a range of stellar types with parameters that are typical of the Galactic outer disk and halo, together with analogs of stars in M31 and in satellite dwarf spheroidal galaxies around the Milky Way.
more »
« less
- Award ID(s):
- 2233781
- PAR ID:
- 10531617
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 168
- Issue:
- 3
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 110
- Size(s):
- Article No. 110
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a new set of tools to derive systemic velocities for single-mode RR Lyrae stars from visual and near-infrared spectra. We derived scaling relations and line-of-sight velocity templates using both APOGEE andGaiaspectroscopic products combined with photometricG-band amplitudes. We provide a means to estimate systemic velocities for the RR Lyrae subclasses, RRab and RRc. Our analysis indicates that the scaling relation between the photometric and line-of-sight velocity amplitudes is nonlinear, with a break in a linear relation occurring around ≈0.4 mag in both theV-band andG-band amplitudes. We did not observe such a break in the relation for the first-overtone pulsators. Using stellar pulsation models, we further confirm and examine the nonlinearity in scaling relation for the RRab subclass. We observed little to no variation with stellar parameters (mass, metallicity, and luminosity) in the scaling relation between the photometric and line-of-sight velocity amplitudes for fundamental-mode pulsators. We observed an offset in the scaling relation between the observations and stellar pulsation models, mainly in the low-amplitude RR Lyrae regime. This offset disappears when different sets of convective parameters are used. Thus, the Fourier amplitudes obtained from the photometry and line-of-sight velocity measurements can be utilized to constrain convective parameters of stellar pulsation models. The scaling relations and templates for APOGEE andGaiadata accurately predict systemic velocities compared to literature values. In addition, our tools derived from theGaiaspectra improve the precision of the derived systemic velocities by approximately 50 percent and provide a better description of the uncertainty distribution in comparison with previous studies. Our newly derived tools will be used for RR Lyrae variables observed toward the Galactic bulge.more » « less
-
Abstract Stellar bow shock nebulae are arcuate shock fronts formed by the interaction of radiation-driven stellar winds and the relative motion of the ambient interstellar material. Stellar bow shock nebulae provide a promising means to measure wind-driven mass loss, independent of other established methods. In this work, we characterize the stellar sources at the center of bow shock nebulae drawn from all-sky catalogs of 24μm–selected nebulae. We obtain new, low-resolution blue optical spectra for 104 stars and measure stellar parameters temperatureTeff, surface gravity , and projected rotational broadening . We perform additional photometric analysis to measure stellar radiusR*, luminosityL*, and visual-band extinctionAV. All but one of our targets are O and early B stars, with temperatures ranging fromT= 16.5 to 46.8 kK, gravities from 2.57 to 4.60, and from <100 to 400 km s−1. With the exception of rapid rotatorζOph, bow shock stars do not rotate at or near critical velocities. At least 60 of 103 (60%) OB bow shock stars are binaries, consistent with the multiplicity fraction of other OB samples. The sample shows a runaway fraction of 23%, with 19 stars havingv2D≥ 25 km s−1. Of the 19 runaways, at least 15 (≥79%) are binaries, favoring dynamical ejection over the binary supernova channel for producing runaways. We provide a comprehensive census of stellar parameters for bow shock stars, useful as a foundation for determining the mass-loss rates for OB-type stars—one of the single most critical factors in stellar evolution governing the production of neutron stars and black holes.more » « less
-
Abstract In this paper, we present the Heavy Metal Survey, which obtained ultradeep medium-resolution spectra of 21 massive quiescent galaxies at 1.3 <z< 2.3 with Keck/LRIS and MOSFIRE. With integration times of up to 16 hr per band per galaxy, we observe numerous Balmer and metal absorption lines in atmospheric windows. We successfully derive spectroscopic redshifts for all 21 galaxies, and for 19 we also measure stellar velocity dispersions (σv), ages, and elemental abundances, as detailed in an accompanying paper. Except for one emission-line active galactic nucleus, all galaxies are confirmed as quiescent through their faint or absent Hαemission and evolved stellar spectra. For most galaxies exhibiting faint Hα, elevated [Nii]/Hαsuggests a non-star-forming origin. We calculate dynamical masses (Mdyn) by combiningσvwith structural parameters obtained from the Hubble Space Telescope COSMOS(-DASH) survey and compare them with stellar masses (M*) derived using spectrophotometric modeling, considering various assumptions. For a fixed initial mass function (IMF), we observe a strong correlation betweenMdyn/M*andσv. This correlation may suggest that a varying IMF, with high-σvgalaxies being more bottom heavy, was already in place atz∼ 2. When implementing theσv-dependent IMF found in the cores of nearby early-type galaxiesandcorrecting for biases in our stellar mass and size measurements, we find a low scatter inMdyn/M*of 0.14 dex. However, these assumptions result in unphysical stellar masses, which exceed the dynamical masses by 34%. This tension suggests that distant quiescent galaxies do not simply grow inside-out into today’s massive early-type galaxies and the evolution is more complicated.more » « less
-
ABSTRACT We calculate the fundamental stellar parameters effective temperature, surface gravity, and iron abundance – Teff, log g, [Fe/H] – for the final release of the Mapping Nearby Galaxies at APO (MaNGA) Stellar Library (MaStar), containing 59 266 per-visit-spectra for 24 290 unique stars at intermediate resolution (R ∼ 1800) and high S/N (median = 96). We fit theoretical spectra from model atmospheres by both MARCS and BOSZ-ATLAS9 to the observed MaStar spectra, using the full spectral fitting code pPXF. We further employ a Bayesian approach, using a Markov Chain Monte Carlo (MCMC) technique to map the parameter space and obtain uncertainties. Originally in this paper, we cross match MaStar observations with Gaia photometry, which enable us to set reliable priors and identify outliers according to stellar evolution. In parallel to the parameter determination, we calculate corresponding stellar population models to test the reliability of the parameters for each stellar evolutionary phase. We further assess our procedure by determining parameters for standard stars such as the Sun and Vega and by comparing our parameters with those determined in the literature from high-resolution spectroscopy (APOGEE and SEGUE) and from lower resolution matching template (LAMOST). The comparisons, considering the different methodologies and S/N of the literature surveys, are favourable in all cases. Our final parameter catalogue for MaStar cover the following ranges: 2592 ≤ Teff ≤ 32 983 K; −0.7 ≤ log g ≤ 5.4 dex; −2.9 ≤ [Fe/H] ≤ 1.0 dex and will be available with the last SDSS-IV Data Release, in 2021 December.more » « less
An official website of the United States government
