- Award ID(s):
- 1662177
- NSF-PAR ID:
- 10531681
- Publisher / Repository:
- Purdue University Research Repository
- Date Published:
- Subject(s) / Keyword(s):
- Wave propagation Topologically Interlocked Materials Finite Element Analysis
- Format(s):
- Medium: X
- Location:
- Purdue University Research Repository
- Right(s):
- CC0 1.0 Universal
- Institution:
- Purdue University
- Sponsoring Org:
- National Science Foundation
More Like this
-
A series of files for the execution of finite element simulations of topologically interlocked assemblies are provided and can be executed with the finite element code ABAQUS (or similar). In all files the following structure is present: -- For each part of the assembly (frame, indenter, building block), a definition of nodes (*node) and sets of nodes (*nset), elements (*element) and set of elements (*elset) is provided. -- Instances of parts are defined an placed in the assembly at position according to the assembly plan. -- Parts frame and indenter are defined as rigid bodies (*rigid body) . Building blocks as linear elastic (*elastic). -- Boundary conditions and constraints are defined (*boundary) -- Surfaces (*surface), surface behavior (*surface behavior) and contact interactions (*contact) are given. -- A mass scaled explicit solution is used (*dynamic, explicit) -- Computed values are recorded (*node output, *energy output, *element output) ABAQUS inp file for a 6 by 6 assembly of hexagonal scutoids, coefficient of friction 0.4: HexScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of hexagonal scutoids, all building blocks fused to a monolithic system: HexScutoid6x6mu4_fused.inp ABAQUS inp file for a 7 by 7 assembly of hexagonal scutoids, coefficient of friction 0.4: HexScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of pentagonal scutoids, coefficient of friction 0.4: PentagonScutoid6x6mu4.inp ABAQUS inp file for a 7 by 7 assembly of pentagonal scutoids, coefficient of friction 0.4: PentagonScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of tetrahedra, coefficient of friction 0.4: Tetrahedra6x6mu4.inp ABAQUS inp file for a 7 by 7 assembly of tetrahedra, coefficient of friction 0.4: Tetrahedra7x7mu4.inp This work was supported by NSF Award 16622177.more » « less
-
This publication provides files for the finite element simulation of the mechanical behavior of a set of topologically interlocked material (TIM) systems. Files are to be executed with the FE code ABAQUS (TM), Simulia Inc., or need a file translator to be used by other codes if needed. Files are provided for even (i=10) and odd (i=11) numbered square assemblies of (i x i) blocks confined by a rigid frame and subjected to a transverse displacement load at the assembly center. The following files are provided: The simulations are executed as explicit dynamic simulations with a mass-scale approach to extract the quasi-static response. Building blocks are linear elastic and interact with neighbors by contact and friction. The following files are provided BR_tet_i6.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 6 x 6 blocks. This is the reference model 1. BR_tet_i8.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 8 x 8 blocks. This is the reference model 1. BR_tet_i10.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 10 x 10 blocks. This is the reference model 1. BR_tet_i12.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 12 x 12 blocks. This is the reference model 1. BR_tet_i5.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 5 x 5 blocks. This is the reference model 2. BR_tet_i7.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 7 x 7 blocks. This is the reference model 2. BR_tet_i9.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 9 x 9 blocks. This is the reference model 2. BR_tet_i11.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 11 x 11 blocks. This is the reference model 2. BT1_tet_i6.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT1_tet_i8.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT1_tet_i10.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT1_tet_i12.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT1_tet_i5.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT1_tet_i7.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT1_tet_i9.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT1_tet_i11.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT2_tet_i6.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT2_tet_i8.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT2_tet_i10.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT2_tet_i12.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT2_tet_i5.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT1_tet_i6_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT1_tet_i8_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT1_tet_i10_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT1_tet_i12_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT1_tet_i5_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 5 x 5 blocks. BT1_tet_i7_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 7 x 7 blocks. BT1_tet_i9_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 9 x 9 blocks. BT1_tet_i11_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 11 x 11 blocks. BT2_tet_i6_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT2_tet_i8_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT2_tet_i10_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT2_tet_i12_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT2_tet_i5_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks.more » « less
-
Abstract The present study is concerned with the deformation response of an architectured material system, i.e., a 2D-material system created by the topological interlocking assembly of polyhedra. Following the analogy of granular crystals, the internal load transfer is considered along well-defined force networks, and internal equivalent truss structures are used to describe the deformation response. Closed-form relationships for stiffness, strength, and toughness of the topologically interlocked material system are presented. The model is validated relative to direct numerical simulation results. The topologically interlocked material system characteristics are compared with those of monolithic plates. The architectured material system outperforms equivalent size monolithic plates in terms of toughness for nearly all possible ratios of modulus to the strength of the material used to make the building blocks and plate, respectively. In addition, topologically interlocked material systems are shown to provide better strength characteristics than a monolithic system for low strength solids.more » « less
-
Topologically Interlocked Material systems are a class of architectured materials. TIM systems are assembled from individual building blocks and are confined by an external frame. In particular, 2D, plate-type assemblies are considered. This publication contains files for the numerical analysis of the mechanical behavior of TIM systems through the use of finite element analysis. ABAQUS model files (inp format) for the study of the chiral/achiral response are provided. Files chirality_s1_in.inp are for type I square assemblies. n=3,5,7,9 Files chirality_s2_in.inp are for type II square assemblies. n=4,6,8,10 Files chirality_h1_in.inp are for type I hexagon assemblies. n=2,3,4,5 Files chirality_h2_in.inp are for type II hexagon assemblies. n=2,3,4,5 File chirality_s1i5_center_dissection.inp is for an assembly with a dissection of the central tile of type I square assembly with n=5. File chirality_s2i6_center_dissection.inp is for an assembly with a dissection of the central tile of type II square assembly with n=6. File chirality_s1i5_center_surrounding_dissection.inp is for an assembly with dissections of the tiles surrounding the center tile of type I square assembly with n=5. File chirality_h1i3_center_dissection.inp is for an assembly with a dissection of the central tile of type I hexagon assembly with n=3. File chirality_h2i3_center_dissection.inp is for an assembly with a dissection of the central tile of type II hexagon assembly with n=3. File chirality_h1i3_center_surrounding_dissection.inp is for an assembly with dissections of the tiles surrounding the center tile of type I hexagon assembly with n=3.more » « less
-
Topologically interlocking material (TIM) systems are constrained assemblies of building blocks with geometry such that individual unit elements cannot be removed from the assembly without complete disassembly. These assemblies can bear load in the absence of adhesive bonds. TIM systems with scutoid‐shaped building blocks are investigated. Scutoids are prism‐like shapes with two polygonal faces and contain vertices on the lateral sides which enable geometric interlocking. The quasi‐static mechanical behavior of two types of scutoid‐based TIM systems is investigated and compared to reference tetrahedron‐based TIM systems. TIM systems are realized as plate‐type assemblies and a central point‐force load is considered. The computational analysis is conducted with the finite‐element method. Scutoid‐based TIM systems are found, in aggregate, to match or exceed the performance of the tetrahedra‐based systems. It is documented that TIM systems in general, but scutoid‐based systems in particular, emerge to possess chiral characteristics. The combination of building block symmetry and assembly symmetry together determines the type of chirality in the mechanical response. Experimental data validates the computational finding. In summary, considering scutoids as building blocks for load‐carrying TIM assemblies opens the pathway to new classes of mechanical behavior in systems where structure and microstructure strongly interact with each other.