Abstract Precise estimates of protostellar masses are crucial to characterize the formation of stars of low masses down to brown dwarfs (BDs;M*< 0.08M☉). The most accurate estimation of protostellar mass uses the Keplerian rotation in the circumstellar disk around the protostar. To apply the Keplerian rotation method to a protostar at the low-mass end, we have observed the Class 0 protostar IRAS 16253-2429 using the Atacama Large Millimeter/submillimeter Array (ALMA) in the 1.3 mm continuum at an angular resolution of 0.″07 (10 au), and in the12CO, C18O,13CO (J= 2–1), and SO (JN= 65−54) molecular lines, as part of the ALMA Large Program Early Planet Formation in Embedded Disks project. The continuum emission traces a nonaxisymmetric, disk-like structure perpendicular to the associated12CO outflow. The position–velocity (PV) diagrams in the C18O and13CO lines can be interpreted as infalling and rotating motions. In contrast, the PV diagram along the major axis of the disk-like structure in the12CO line allows us to identify Keplerian rotation. The central stellar mass and the disk radius are estimated to be ∼0.12–0.17M☉and ∼13–19 au, respectively. The SO line suggests the existence of an accretion shock at a ring (r∼ 28 au) surrounding the disk and a streamer from the eastern side of the envelope. IRAS 16253-2429 is not a proto-BD but has a central stellar mass close to the BD mass regime, and our results provide a typical picture of such very-low-mass protostars.
more »
« less
Early Planet Formation in Embedded Disks (eDisk). VII. Keplerian Disk, Disk Substructure, and Accretion Streamers in the Class 0 Protostar IRAS 16544–1604 in CB 68
Abstract We present observations of the Class 0 protostar IRAS 16544–1604 in CB 68 from the “Early Planet Formation in Embedded Disks (eDisk)” ALMA Large program. The ALMA observations target continuum and lines at 1.3 mm with an angular resolution of ∼5 au. The continuum image reveals a dusty protostellar disk with a radius of ∼30 au seen close to edge-on and asymmetric structures along both the major and minor axes. While the asymmetry along the minor axis can be interpreted as the effect of the dust flaring, the asymmetry along the major axis comes from a real nonaxisymmetric structure. The C18O image cubes clearly show the gas in the disk that follows a Keplerian rotation pattern around a ∼0.14M⊙central protostar. Furthermore, there are ∼1500 au scale streamer-like features of gas connecting from northeast, north–northwest, and northwest to the disk, as well as the bending outflow as seen in the12CO (2–1) emission. At the apparent landing point of the NE streamer, there is SO (65–54) and SiO (5–4) emission detected. The spatial and velocity structure of the NE streamer can be interpreted as a free-falling gas with a conserved specific angular momentum, and the detection of the SO and SiO emission at the tip of the streamer implies the presence of accretion shocks. Our eDisk observations have unveiled that the Class 0 protostar in CB 68 has a Keplerian-rotating disk with a flaring and nonaxisymmetric structure associated with accretion streamers and outflows.
more »
« less
- PAR ID:
- 10531823
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 190
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We performed radiative transfer calculations and observing simulations to reproduce the 1.3 mm dust-continuum and C18O (2–1) images in the Class I protostar R CrA IRS7B-a, observed with the ALMA Large Program “Early Planet Formation in Embedded Disks (eDisk).” We found that a dust disk model passively heated by the central protostar cannot reproduce the observed peak brightness temperature of the 1.3 mm continuum emission (∼195 K), regardless of the assumptions about the dust opacity. Our calculation suggests that viscous accretion heating in the disk is required to reproduce the observed high brightness temperature. The observed intensity profile of the 1.3 mm dust-continuum emission along the disk minor axis is skewed toward the far side of the disk. Our modeling reveals that this asymmetric intensity distribution requires flaring of the dust along the disk vertical direction with the scale height followingh/r∼r0.3as a function of radius. These results are in sharp contrast to those of Class II disks, which show geometrically flat dust distributions and lower dust temperatures. From our modeling of the C18O (2–1) emission, the outermost radius of the gas disk is estimated to be ∼80 au, which is larger than that of the dust disk (∼62 au), to reproduce the observed distribution of the C18O (2–1) emission in IRS 7B-a. Our modeling unveils a hot and thick dust disk plus a larger gas disk around one of the eDisk targets, which could be applicable to other protostellar sources in contrast to more evolved sources.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class 0 protostar IRAS 04166+2706, obtained as part of the ALMA Large Program Early Planet Formation in Embedded Disks. These observations were made in the 1.3 mm dust continuum and molecular lines at angular resolutions of (∼8 au) and (∼25 au), respectively. The continuum emission shows a disklike structure with a radius of ∼22 au. Kinematical analysis of13CO (2–1), C18O (2–1), H2CO (30,3–20,2), CH3OH (42–31) emission demonstrates that these molecular lines trace the infalling-rotating envelope and possibly a Keplerian disk, enabling us to estimate the protostar mass to be 0.15M⊙ < M⋆ < 0.39M⊙. The dusty disk is found to exhibit a brightness asymmetry along its minor axis in the continuum emission, probably caused by a flared distribution of the dust and the high optical depth of the dust emission. In addition, the12CO (2–1) and SiO (5–4) emissions show knotty and wiggling motions in the jets. Our high-angular-resolution observations revealed the most recent mass ejection events, which have occurred within the last ∼25 yr.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46M⊙and 0.26M⊙for BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events.more » « less
-
We present the results of the observations made within the ALMA Large Program called Early Planet Formation in Embedded disks of the Class 0 protostar GSS30 IRS3. Our observations included the 1.3 mm continuum with a resolution of 0″.05 (7.8 au) and several molecular species, including12CO,13CO, C18O, H2CO, and c-C3H2. The dust continuum analysis unveiled a disk-shaped structure with a major axis of ~200 au. We observed an asymmetry in the minor axis of the continuum emission suggesting that the emission is optically thick and the disk is flared. On the other hand, we identified two prominent bumps along the major axis located at distances of 26 and 50 au from the central protostar. The origin of the bumps remains uncertain and might be an embedded substructure within the disk or the temperature distribution and not the surface density because the continuum emission is optically thick. The12CO emission reveals a molecular outflow consisting of three distinct components: a collimated component, an intermediate-velocity component exhibiting an hourglass shape, and a wider angle low-velocity component. We associate these components with the coexistence of a jet and a disk wind. The C18O emission traces both a circumstellar disk in Keplerian rotation and the infall of the rotating envelope. We measured a stellar dynamical mass of 0.35 ±0.09 M⊙.more » « less
An official website of the United States government

