Abstract The medicinal plantCatharanthus roseusproduces numerous secondary metabolites of interest for the treatment of many diseases – most notably for the terpene indole alkaloid (TIA) vinblastine, which is used in the treatment of leukemia and Hodgkin's lymphoma. Historically, methyl jasmonate (MeJA) has been used to induce TIA production, but in the past, this has only been investigated in whole seedlings, cell culture, or hairy root culture. This study examines the effects of the phytohormones MeJA and ethylene on the induction of TIA biosynthesis and accumulation in the shoots and roots of 8‐day‐old seedlings of two varieties ofC. roseus. Using LCMS and RT‐qPCR, we demonstrate the importance of variety selection, as we observe markedly different induction patterns of important TIA precursor compounds. Additionally, both phytohormone choice and concentration have significant effects on TIA biosynthesis. Finally, our study suggests that several early‐induction pathway steps as well as pathway‐specific genes are likely to be transcriptionally regulated. Our findings highlight the need for a complete set of'omics resources in commonly usedC. roseusvarieties and the need for caution when extrapolating results from one cultivar to another.
more »
« less
Characterization of the ZCTs, a subgroup of Cys2-His2 zinc finger transcription factors regulating alkaloid biosynthesis in Catharanthus roseus
Abstract Key MessageTheC. roseus ZCTsare jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. AbstractCatharanthus roseusis the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known asZinc fingerCatharanthusTranscription factors (ZCTs).We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression ofZCTsin seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). TheZCTsdiffered in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except forZCT5). We showed significant activation of thepZCT1andpZCT3promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of theZCTscan be mediated by CrMYC2a. In summary, theC. roseus ZCTsare jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.
more »
« less
- Award ID(s):
- 2031237
- PAR ID:
- 10531886
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Plant Cell Reports
- Volume:
- 43
- Issue:
- 9
- ISSN:
- 0721-7714
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway ofCatharanthus roseus(Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, theC. roseusMIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell‐type specificity of MIA biosynthesis is achieved is poorly understood.We generated single‐cell multi‐omics data fromC. roseusleaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)‐binding site profiles, we constructed a cell‐type‐aware gene regulatory network for MIA biosynthesis.We showcased cell‐type‐specific TFs as well as cell‐type‐specificcis‐regulatory elements. Using motif enrichment analysis, co‐expression across cell types, and functional validation approaches, we discovered a novel idioblast‐specific TF (Idioblast MYB1,CrIDM1) that activates expression of late‐stage MIA biosynthetic genes in the idioblast.These analyses not only led to the discovery of the first documented cell‐type‐specific TF that regulates the expression of two idioblast‐specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell‐type‐specific metabolic regulation.more » « less
-
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway inCatharanthus roseushairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.more » « less
-
Abstract The inversion of C3 stereochemistry in monoterpenoid indole alkaloids (MIAs), derived from the central precursor strictosidine (3S), is essential for synthesizing numerous 3RMIAs and oxindoles, including the antihypertensive drug reserpine found inRauvolfia serpentina(Indian snakeroot) andRauvolfia tetraphylla(devil pepper) of the plant family Apocynaceae. MIA biosynthesis begins with the reduction of strictosidine aglycone by various reductases, preserving the initial 3Sstereochemistry. In this study, we identify and biochemically characterize a conserved oxidase-reductase pair from the Apocynaceae, Rubiaceae, and Gelsemiaceae families of the order Gentianales: the heteroyohimbine/yohimbine/corynanthe C3-oxidase (HYC3O) and C3-reductase (HYC3R). These enzymes collaboratively invert the 3Sstereochemistry to 3Racross a range of substrates, resolving the long-standing question about the origin of 3RMIAs and oxindole derivatives, and facilitation of reserpine biosynthesis. Notably,HYC3OandHYC3Rare located within gene clusters in both theR. tetraphyllaandCatharanthus roseus(Madagascar periwinkle) genomes, which are partially homologous to an elusive geissoschizine synthase (GS) gene cluster we also identified in these species. InR. tetraphylla, these clusters occur closely in tandem on a single chromosome, likely stemming from a single segmental duplication event, while inC. roseus, a closely related member of rauvolfioid Apocynaceae, they were later separated by a chromosomal translocation. The ancestral genomic context for both clusters can be traced all the way back to common ancestry with grapevine. Given the presence of syntenic GS homologs inMitragyna speciosa(Rubiaceae), the GS cluster, at least in part, probably evolved at the base of the Gentianales, which split from other core eudicots up to 135 million years ago. We also show that the strictosidine biosynthetic gene cluster, required to initiate the MIA pathway, plausibly evolved concurrently. The reserpine biosynthetic cluster likely arose much later in the rauvolfioid lineage of Apocynaceae. Collectively, our work uncovers the genomic and biochemical basis for key events in MIA evolution and diversification, providing insights beyond the well-characterized vinblastine and ajmaline biosynthetic pathways.more » « less
-
Abstract PremiseA multi‐omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylousTurnera subulata(Sm.) as an exploratory method to identify genes for future empirical research. MethodsMass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L‐ and S‐morphs. RNAseq was used to generate a co‐expression network of the developing filaments, MS data were mapped to the co‐expression network to identify hypothetical relationships between theS‐gene responsible for filament dimorphisms and differentially expressed proteins. ResultsMapping all MS identified proteins to a co‐expression network of the S‐morph's developing filaments identified several clusters containing SPH1 and other differentially expressed or phosphorylated proteins. Co‐expression analysis clustered CDKG2, a protein that induces endoreduplication, and SPH1—suggesting a shared biological function. MS analysis suggests that the protein is present and phosphorylated only in the S‐morph, and thus active only in the S‐morph. A series of CDKG2 regulators, including ATM1, and cell cycle regulators also correlated with the presence of reciprocal herkogamy, supporting our interest in the protein. ConclusionsThis work has built a foundation for future empirical work, specifically supporting the role of CDKG2 and ATM1 in promoting filament elongation in response to SPH1 perception.more » « less
An official website of the United States government
