skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AUDIT: Functional Qualification in Additive Manufacturing Via Physical and Digital Twins
Abstract Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce complex parts with unprecedented geometries. However, the lack of understanding of the functional properties of 3D-printed parts has hindered their adoption in critical applications where reliability and durability are paramount. This paper proposes a novel approach to the functional qualification of 3D-printed parts via physical and digital twins. Physical twins are parts that are printed under the same process conditions as the functional parts and undergo a wide range of (destructive) tests to determine their mechanical, thermal, and chemical properties. Digital twins are virtual replicas of the physical twins that are generated using finite element analysis (FEA) simulations based on the 3D shape of the part of interest. We propose a novel approach to transfer learning, specifically designed for the fusion of diverse, unstructured 3D shape data and process inputs from multiple sources. The proposed approach has demonstrated remarkable results in predicting the functional properties of 3D-printed lattice structures. From an engineering standpoint, this paper introduces a comprehensive and innovative methodology for the functional qualification of 3D-printed parts. By combining the strengths of physical and digital twins with transfer learning, our approach opens up possibilities for the widespread adoption of 3D printing in safety-critical applications. Methodologically, this work presents a significant advancement in transfer learning techniques, specifically addressing the challenges of multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and process variables) transfer learning.  more » « less
Award ID(s):
2019378
PAR ID:
10532079
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
146
Issue:
2
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work concerns the laser powder bed fusion (LPBF) additive manufacturing process. We developed and implemented a physics-based approach for layerwise control of the thermal history of an LPBF part. Controlling the thermal history of an LPBF part during the process is crucial as it influences critical-to-quality characteristics, such as porosity, solidified microstructure, cracking, surface finish, and geometric integrity, among others. Typically, LPBF processing parameters are optimized through exhaustive empirical build-and-test procedures. However, because thermal history varies with geometry, processing parameters seldom transfer between different part shapes. Furthermore, particularly in complex parts, the thermal history can vary significantly between layers leading to both within-part and between-part variation in properties. In this work, we devised an autonomous physics-based controller to maintain the thermal history within a desired window by optimizing the processing parameters layer by layer. This approach is a form of digital feedforward model predictive control. To demonstrate the approach, five thermal history control strategies were tested on four unique part geometries (20 total parts) made from stainless steel 316L alloy. The layerwise control of the thermal history significantly reduced variations in grain size and improved geometric accuracy and surface finish. This work provides a pathway for rapid, shape-agnostic qualification of LPBF part quality through control of the causal thermal history as opposed to expensive and cumbersome trial-and-error parameter optimization. 
    more » « less
  2. The long-term goal of this work is to predict and control the microstructure evolution in metal additive manufacturing processes. In pursuit of this goal, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics, namely, the meltpool depth and primary dendritic arm spacing in Nickel Alloy 718 parts made using the laser powder bed fusion (LPBF) process. Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of LPBF parts is optimized through a cumbersome build-and-characterize empirical approach. Rapid and accurate models for predicting microstructure evolution are therefore valuable to reduce process development time and achieve consistent properties. However, owing to their computational complexity, existing physics-based models for predicting the microstructure evolution are limited to a few layers, and are challenging to scale to practical parts. This paper addresses the aforementioned research gap via a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the primary dendritic arm spacing with root mean squared error ≈ 110 nm. This work thus presents an avenue for future physics-based optimization and control of microstructure evolution in LPBF. 
    more » « less
  3. Data physicalizations (3D printed terrain models, anatomical scans, or even abstract data) can naturally engage both the visual and haptic senses in ways that are difficult or impossible to do with traditional planar touch screens and even immersive digital displays. Yet, the rigid 3D physicalizations produced with today's most common 3D printers are fundamentally limited for data exploration and querying tasks that require dynamic input (e.g., touch sensing) and output (e.g., animation), functions that are easily handled with digital displays. We introduce a novel style of hybrid virtual + physical visualization designed specifically to support interactive data exploration tasks. Working toward a "best of both worlds" solution, our approach fuses immersive AR, physical 3D data printouts, and touch sensing through the physicalization. We demonstrate that this solution can support three of the most common spatial data querying interactions used in scientific visualization (streamline seeding, dynamic cutting places, and world-in-miniature visualization). Finally, we present quantitative performance data and describe a first application to exploratory visualization of an actively studied supercomputer climate simulation data with feedback from domain scientists. 
    more » « less
  4. A digital twin (DT) is an interactive, real-time digital representation of a system or a service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better insight into the physical world. With the increasing complexity of systems and products across many sectors, there is an increasing demand for complex systems optimization. Digital twins vary in complexity and are used for managing the performance, health, and status of a physical system by virtualizing it. The creation of digital twins enabled by Modelbased Systems Engineering (MBSE) has aided in increasing system interconnectivity and simplifying the system optimization process. More specifically, the combination of MBSE languages, tools, and methods has served as a starting point in developing digital twins. This article discusses how MBSE has previously facilitated the development of digital twins across various domains, emphasizing both the benefits and disadvantages of adopting an MBSE enabled digital twin creation. Further, the article expands on how various levels of digital twins were generated via the use of MBSE. An MBSE enabled conceptual framework for developing digital twins is identified that can be used as a research testbed for developing digital twins and optimizing systems and system of systems. Keywords—MBSE, Digital Twin, Digital Shadow, Digital Model, SysML 
    more » « less
  5. Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-service performance of a broad range of complex physical machines, devices, and components. A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., appearance) and the functional response of a specified (unique) physical twin. This paper offers a new perspective on how the emerging concept of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is argued that the material itself can be considered as a highly complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy of material length) and function (i.e., response to external stimuli typically characterized through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital twin can represent the evolution of structure, process, and performance of the material over time, with regard to both process history and in-service environment. This paper establishes the foundational concepts and frameworks needed to formulate and continuously update both the form and function of the digital twin of a selected material physical twin. The form of the proposed material digital twin can be captured effectively using the broadly applicable framework of n-point spatial correlations, while its function at the different length scales can be captured using homogenization and localization process-structure-property surrogate models calibrated to collections of available experimental and physics-based simulation data. 
    more » « less