skip to main content


Title: On the Effect of Driving Turbulent-like Fluctuations on a Harris Current Sheet Configuration and the Formation of Plasmoids
Abstract

Energy dissipation in collisionless plasmas is one of the most outstanding open questions in plasma physics. Magnetic reconnection and turbulence are two phenomena that can produce the conditions for energy dissipation. These two phenomena are closely related to each other in a wide range of plasmas. Turbulent fluctuations can emerge in critical regions of reconnection events, and magnetic reconnection can occur as a product of the turbulent cascade. In this study, we perform 2D particle-in-cell simulations of a reconnecting Harris current sheet in the presence of turbulent fluctuations to explore the effect of turbulence on the reconnection process in collisionless nonrelativistic pair plasmas. We find that the presence of a turbulent field can affect the onset and evolution of magnetic reconnection. Moreover, we observe the existence of a scale-dependent amplitude of magnetic field fluctuations above which these fluctuations are able to disrupt the growing of magnetic islands. These fluctuations provide thermal energy to the particles within the current sheet and preferential perpendicular thermal energy to the background population.

 
more » « less
NSF-PAR ID:
10532178
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
971
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 109
Size(s):
Article No. 109
Sponsoring Org:
National Science Foundation
More Like this
  1. In weakly collisional and collisionless magnetized plasmas, the pressure–strain interaction describes the rate of conversion between bulk flow and thermal energy density. In this study, we derive an analytical expression for the pressure–strain interaction in a coordinate system with an axis aligned with the local magnetic field. The result is eight groups of terms corresponding to different physical mechanisms that can contribute to the pressure–strain interaction. We provide a physical description of each term. The results are immediately of interest to weakly collisional and collisionless magnetized plasmas and the fundamental processes that happen therein, including magnetic reconnection, magnetized plasma turbulence, and collisionless shocks. The terms in the field-aligned coordinate decomposition are likely accessible to measurement with satellite observations.

     
    more » « less
  2. Abstract

    Recently, it has been realized that magnetic plasma turbulence and magnetic field reconnection are inherently related phenomena. Turbulent fluctuations generate regions of sheared magnetic field that become unstable to the tearing instability and reconnection, thus modifying turbulence at the corresponding scales. In this contribution, we give a brief review of some recent results on tearing‐mediated magnetic turbulence. We illustrate the main ideas of this rapidly developing field of study by concentrating on two important examples—magnetohydrodynamic Alfvén turbulence and small‐scale kinetic‐Alfvén turbulence. Due to various potential applications of these phenomena in space physics and astrophysics, we specifically try not to overload the text by heavy analytical derivations but rather present a qualitative discussion accessible to a non‐expert in the theories of turbulence and reconnection.

     
    more » « less
  3. Abstract Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing nonthermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations, we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without a guide field. In X-points, where diverging flows result in a nondiagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain, we identify the mechanisms driving the nonideal electric field using a full Ohm law by means of a statistical analysis based on our PIC simulations. We show that the nonideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated nonuniform effective resistivity model that is negligible on global scales and becomes significant only locally in X-points. It captures the properties of collisionless reconnection with the aim of mimicking its essentials in nonideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission. 
    more » « less
  4. null (Ed.)
    ABSTRACT The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell vpic, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed. 
    more » « less
  5. How energy is converted into thermal energy in weakly collisional and collisionless plasma processes, such as magnetic reconnection and plasma turbulence, has recently been the subject of intense scrutiny. The pressure–strain interaction has emerged as an important piece, as it describes the rate of conversion between bulk flow and thermal energy density. In two companion studies, we presented an alternate decomposition of the pressure–strain interaction to isolate the effects of converging/diverging flow and flow shear instead of compressible and incompressible flow, and we derived the pressure–strain interaction in magnetic field-aligned coordinates. Here, we use these results to study pressure–strain interaction during two-dimensional anti-parallel magnetic reconnection. We perform particle-in-cell simulations and plot the decompositions in both Cartesian and magnetic field-aligned coordinates. We identify the mechanisms contributing to positive and negative pressure–strain interaction during reconnection. This study provides a roadmap for interpreting numerical and observational data of the pressure–strain interaction, which should be important for studies of reconnection, turbulence, and collisionless shocks.

     
    more » « less