Strong adherence to underwater or wet surfaces for applications like tissue adhesion and underwater robotics is a significant challenge. This is especially apparent when switchable adhesion is required that demands rapid attachment, high adhesive capacity, and easy release. Nature displays a spectrum of permanent to reversible attachment from organisms ranging from the mussel to the octopus, providing inspiration for underwater adhesion design that has yet to be fully leveraged in synthetic systems. Here, we review the challenges and opportunities for creating underwater adhesives with a pathway to switchability. We discuss key material, geometric, modeling, and design tools necessary to achieve underwater adhesion similar to the adhesion control demonstrated in nature. Through these interdisciplinary efforts, we envision that bioinspired adhesives can rise to or even surpass the extraordinary capabilities found in biological systems.
more »
« less
Small-scale roughness entraps water and controls underwater adhesion
While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low–surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.
more »
« less
- Award ID(s):
- 2208464
- PAR ID:
- 10532210
- Publisher / Repository:
- Science Advances
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 32
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus‐inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi‐surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large‐scale curvatures and increases contact stress for adaptability to small‐scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.more » « less
-
Abstract While in-situ underwater adhesives are highly desirable for marine exploration and underwater robotics, existing underwater adhesives suffer from significantly reduced performance compared to air-cured adhesives, mainly due to difficulties in removing interfacial water molecules. Here, we develop a pressure-sensitive in-situ underwater adhesive featuring superabsorbent particles infused with functional silane and hydrogel precursors. When injected into an underwater crack, the particles quickly absorb water, swell, and fill the crack. Mechanical pressure is applied to improve particle-particle and particle-substrate interactions, while heat is utilized to trigger thermal polymerization of the hydrogel precursors. This process creates porous adhesives via bulk polymerization and forms covalent bonding with the substrate via surface silanization. Our experiments demonstrate that mechanical pressure significantly enhances the adhesive’s stretchability (from 3 to 5), stiffness (from 37 kPa to 78 kPa), fracture toughness (from 1 kJ/m2to 7 kJ/m2), and interfacial toughness with glass substrates (from 45 J/m2to 270 J/m2).more » « less
-
Octopus-inspired cratered surfaces have recently emerged as a new class of reusable physical adhesives. Preload-dependent adhesion and enhanced adhesion under water distinguish them from the well-studied gecko-inspired pillared surfaces. Despite growing experimental evidence, modeling frameworks and mechanistic understanding of cratered surfaces are still very limited. We recently developed a framework to evaluate suction forces produced by isolated craters in air. In this paper, we focus on underwater craters. The suction force–preload relation predicted by this framework has been validated by experiments carried out with an incompressible fluid under small and moderate preloads. Our model breaks down under a large preload due to multiple possible reasons including liquid vaporization. A direct comparison between liquid and air-filled craters has been carried out and the dependence on the depth of water has been revealed. We find that the suction forces generated by underwater craters scale with the specimen modulus but exhibit non-monotonic dependence on the aspect ratio of the craters.more » « less
-
Abstract Surface wrinkles have emerged as a promising avenue for the development of smart adhesives with dynamically tunable adhesion, finding applications in diverse fields, such as soft robots and medical devices. Despite intensive studies and great achievements, it is still challenging to model and simulate the tunable adhesion with surface wrinkles due to roughened surface topologies and pre-stress inside the materials. The lack of a mechanistic understanding hinders the rational design of these smart adhesives. Here, we integrate a lattice model for nonlinear deformations of solids and nonlocal interaction potentials for adhesion in the framework of molecular dynamics to explore the roles of surface wrinkles on adhesion behaviors. We validate the proposed model by comparing wrinkles in a neo-Hookean bilayer with benchmarked results and reproducing the analytical solution for cylindrical adhesion. We then systematically study the pull-off force of the wrinkled surface with varied compressive strains and adhesion energies. Our results reveal the competing effect between the adhesion-induced contact and the roughness due to wrinkles on enhancing or weakening the adhesion. Such understanding provides guidance for tailoring material and geometry as well as loading wrinkled surfaces for different applications.more » « less
An official website of the United States government

