skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Live fuel moisture and water potential exhibit differing relationships with leaf‐level flammability thresholds
Abstract In semi‐arid regions where drought and wildfire events often co‐occur, such as in Southern California chaparral, relationships between plant hydration, drought‐ and fire‐adapted traits may explain landscape‐scale wildfire dynamics. To examine these patterns, fire scientists and plant physiologists quantify hydration in plants via mass‐based metrics of water content, including live fuel moisture, or pressure‐based metrics of physiological status, such as xylem water potential; however, relationships across these metrics, plant traits and flammability remain unresolved.To determine the impact of hydration on tissue‐level flammability (leaves and stems), we conducted laboratory dehydration tests across wet and dry seasons in which we simultaneously measured xylem water potential, live fuel moisture and flammability. We tested two widespread chaparral shrubs,Adenostoma fasciculatumandCeanothus megacarpus.Live fuel moisture showed a threshold‐type relationship with tissue flammability (increased ignitability and combustibility at specific hydration levels) that aligned with drought‐response traits (turgor loss point) and fire behaviour (increased fire likelihood and spread) identified at the landscape scale. Water potential was the better predictor of flammability in linear statistical models.A. fasciculatumwas more flammable thanC. megacarpus, and both species were more flammable during the wet growing season, suggesting seasonal growth or drought‐related tissue characteristics other than moisture content, such as lignin or chemical content, are critical for determining flammability.Our results suggest a mechanism for landscape‐scale increases in flammability at specific levels of drought stress. Integration of drought‐related traits, such as the turgor loss point, might improve models of wildfire risk in drought‐ and fire‐prone systems. Read the freePlain Language Summaryfor this article on the Journal blog.  more » « less
Award ID(s):
2216855 2003205
PAR ID:
10532239
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Functional Ecology
Volume:
37
Issue:
11
ISSN:
0269-8463
Page Range / eLocation ID:
2770 to 2785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Plant populations are limited by resource availability and exhibit physiological trade‐offs in resource acquisition strategies. These trade‐offs may constrain the ability of populations to exhibit fast growth rates under water limitation and high cover of neighbours. However, traits that confer drought tolerance may also confer resistance to competition. It remains unclear how fitness responses to these abiotic conditions and biotic interactions combine to structure grassland communities and how this relationship may change along a gradient of water availability.To address these knowledge gaps, we estimated the low‐density growth rates of populations in drought conditions with low neighbour cover and in ambient conditions with average neighbour cover for 82 species in six grassland communities across the Central Plains and Southwestern United States. We assessed the relationship between population tolerance to drought and resistance to competition and determined if this relationship was consistent across a precipitation gradient. We also tested whether population growth rates could be predicted using plant functional traits.Across six sites, we observed a positive correlation between low‐density population growth rates in drought and in the presence of interspecific neighbours. This positive relationship was particularly strong in the grasslands of the northern Great Plains but weak in the most xeric grasslands. High leaf dry matter content and a low (more negative) leaf turgor loss point were associated with high population growth rates in drought and with neighbours in most grassland communities.Synthesis: A better understanding of how both biotic and abiotic factors impact population fitness provides valuable insights into how grasslands will respond to extreme drought. Our results advance plant strategy theory by suggesting that drought tolerance increases population resistance to interspecific competition in grassland communities. However, this relationship is not evident in the driest grasslands, where above‐ground competition is likely less important. Leaf dry matter content and turgor loss point may help predict which populations will establish and persist based on local water availability and neighbour cover, and these predictions can be used to guide the conservation and restoration of biodiversity in grasslands. 
    more » « less
  3. Abstract Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem. 
    more » « less
  5. Summary Many woody plants produce large floral displays early in the spring when xylem transport can be variable and often reduced. To determine whether stem hydraulics impact floral water use, we quantified floral transpiration and tested whether it was correlated with stem xylem conductivity in five temperate woody species that flower before producing leaves.We measured inflorescence gas exchange, examined the relationship between diffusive conductance and inflorescence morphology, and estimated the amount of water supplied to an inflorescence by the phloem. We also tested for correlation between transpiration and native stem xylem conductivity for branches with leaves and branches with flowers.The flowers of our study species obtain most of their water from the xylem. Diffusive conductance was higher in small inflorescences, but water content and daily transpiration rates were greater for larger inflorescences. We found no correlation between floral transpiration per branch and stem xylem conductivity within species.The data suggest that inflorescence water loss during anthesis is not limited by the xylem in our study species. We highlight the impact of floral morphology on hydraulic traits and encourage exploration into temporal shifts in floral hydration. 
    more » « less