skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collective Contracts for Message-Passing Parallel Programs
Procedure contracts are a well-known approach for specifying programs in a modular way. We investigate a new contract theory for collective procedures in parallel message-passing programs. As in the sequential setting, one can verify that a procedure f conforms to its contract using only the contracts, and not the implementations, of the collective procedures called by f. We apply this approach to C programs that use the Message Passing Interface (MPI), introducing a new contract language that extends the ANSI/ISO C Specification Language. We present contracts for the standard MPI collective functions, as well as many user-defined collective functions. A prototype verification system has been implemented using the CIVL model checker for checking contract satisfaction within small bounds on the number of processes.  more » « less
Award ID(s):
1955852
PAR ID:
10532240
Author(s) / Creator(s):
;
Editor(s):
Gurfinkel, Arie; Ganesh, Vijay
Publisher / Repository:
Springer
Date Published:
Edition / Version:
1
Volume:
14682
ISBN:
978-3-031-65630-9
Page Range / eLocation ID:
44-68
Subject(s) / Keyword(s):
contract message-passing MPI verification collective
Format(s):
Medium: X Size: 1.2MB Other: pdf
Size(s):
1.2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The 2019 ABET computer science criteria requires that all computing students learn parallel and distributed computing (PDC) as undergraduates, and CS2013 recommends at least fifteen hours of PDC in the undergraduate curriculum. Consequently, many educators look for easy ways to integrate PDC into courses at their institutions. This hands-on workshop introduces Message Passing Interface (MPI) basics in C/C++ and Python using clusters of Raspberry Pis. The Message Passing Interface (MPI) is a multi-language, platform independent, industry-standard library for parallel and distributed computing. Raspberry Pis are an inexpensive and engaging hardware platform for studying PDC as early as the first course. Participants will experience how to teach distributed computing essentials with MPI by means of reusable, effective "parallel patterns", including single program multiple data (SPMD) execution, send-receive message passing, the master-worker pattern, parallel loop patterns, and other common patterns, plus longer "exemplar" programs that use MPI to solve significant applied problems. The workshop includes: (i) personal experience with the Raspberry Pi (clusters provided for workshop use); (ii) assembly of Beowulf clusters of Raspberry Pis quickly in the classroom; (iii) self-paced hands-on experimentation with the working MPI programs; and (iv) a discussion of how these may be used to achieve the goals of CS2013 and ABET. No prior experience with MPI, PDC, or the Raspberry Pi is expected. All materials from this workshop will be freely available from CSinParallel.org; participants should bring a laptop to access these materials. 
    more » « less
  2. Ghafoor, Sheikh; Prasad, Sushil K. (Ed.)
    The ACM/IEEE CS 2013 curriculum recommendations state that every undergraduate CS major should learn about parallel and distributed computing (PDC). One way to accomplish this is to teach students about the Message Passing Interface (MPI), a platform that is commonly used on modern supercomputers and Beowulf clusters, but can also be used on a Network of Workstations (NoW), or a multicore laptop or desktop. MPI incorporates many PDC concepts and can serve as a platform for hands-on learning activities in which students must apply those concepts. The MPI standard defines language bindings for Fortran and C/C++, but many university instructors lack expertise in these languages, preventing them from using MPI in their courses. OpenMPI is a free implementation of the MPI standard that also provides Java bindings for MPI. This paper describes how to install OpenMPI with these Java bindings; to illustrate the use of these bindings, the paper also presents several patternlets—minimalist example programs—that show how to implement PDC design patterns using OpenMPI and Java. This provides a new means of introducing students to PDC concepts. 
    more » « less
  3. In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO, a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms. Performance evaluation is done on Lustre and GPFS filesystems. MPI-Vector-IO scales well with MPI processes and file size and achieves bandwidth up to 22 GB/s for common spatial data access patterns. We observed that independent file read functions performed better than collective functions in MPI-IO for contiguous access pattern on Lustre. In general, the I/O is improved by one to two orders of magnitude over real-world datasets using up to 1152 CPU cores. Spatial Join query is used as an exemplar to demonstrate an end-to-end application using MPI-Vector-IO. 
    more » « less
  4. Kokkos provides in-memory advanced data structures, concurrency, and algorithms to support performance portable C++ parallel programming across CPUs and GPUs. The Message Passing Interface (MPI) provides the most widely used message passing model for inter-node communication. Many programmers use both Kokkos and MPI together. In this paper, Kokkos is integrated within an MPI implementation for ease of use in applications that use both Kokkos and MPI, without sacrificing performance. For instance, this model allows passing first-class Kokkos objects directly to extended C++-based MPI APIs. We prototype this integrated model using ExaMPI, a C++17- based subset implementation of MPI-4.We then demonstrate use of our C++-friendly APIs and Kokkos extensions through benchmarks and a mini-application.We explain why direct use of Kokkos within certain parts of the MPI implementation is crucial to performance and enhanced expressivity. Although the evaluation in this paper focuses on CPU-based examples, we also motivate why making Kokkos memory spaces visible to the MPI implementation generalizes the idea of “CPU memory” and “GPU memory” in ways that enable further optimizations in heterogeneous Exascale architectures. Finally, we describe future goals and show how these mesh both with a possible future C++ API for MPI-5 as well as the potential to accelerate MPI on such architectures. 
    more » « less
  5. MPI.jl is a Julia package for using the Message Passing Interface (MPI), a standardized and widely-supported communication interface for distributed computing, with multiple open source and proprietary implementations. It roughly follows the C MPI interface, with some additional conveniences afforded by the Julia language such as automatic handling of buffer lengths and datatypes. 
    more » « less