skip to main content


This content will become publicly available on May 28, 2025

Title: Investigating the origin of the far-field reflection interference fringe (RIF) of microdroplets

We show that the reflection interference fringe (RIF) is formed on a screen far away from the microdroplets placed on a prism-based substrate, which have low contact angles and thin droplet heights, caused by the dual convex–concave profile of the droplet, not a pure convex profile. The geometric formulation shows that the interference fringes are caused by the optical path difference when the reflected rays from the upper convex profile at the droplet–air interface interfere with reflection from the lower concave profile at oblique angles lower than the critical angle. Analytic solutions are obtained for the droplet height and the contact angle out of the fringe number and the fringe radius in RIF from the geometric formulation. Furthermore, the ray tracing simulation is conducted using the custom-designed code. The geometric formulation and the ray tracing show excellent agreement with the experimental observation in the relation between the droplet height and the fringe number and the relation between the contact angle and the fringe radius. This study is remarkable as the droplet's dual profile cannot be easily observed with the existing techniques. However, the RIF technique can effectively verify the existence of a dual profile of the microdroplets in a simple setup. In this work, the RIF technique is successfully developed as a new optical diagnostic technique to determine the microdroplet features, such as the dual profile, the height, the contact angle, the inflection point, and the precursor film thickness, by simply measuring the RIF patterns on the far-field screen.

 
more » « less
Award ID(s):
2301973
NSF-PAR ID:
10532285
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
20
ISSN:
0021-8979
Subject(s) / Keyword(s):
microdroplet, reflection, interference, fringe, contact angle, profile
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another, immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the wetting and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to study the phenomenology of partial wetting and wrapping of the droplet by measuring angles of contact as a function of the elasticity of the filament, the applied tension and the curvature of the droplet. We find that a purely geometric theory gives a good description of the mechanical equilibria in the system. The estimates of applied tension and tension in the filament obey an elastic version of the Young–Laplace–Dupré relation. However, curvatures close to the contact line are not captured by the geometric theory, possibly because of 3D effects at the contact line. We also find that when a highly-bendable filament completely wraps the droplet, there is continuity of curvature at the droplet-filament interface, leading to seamless wrapping as observed in a 3D droplet. 
    more » « less
  2. Abstract

    Lasers have a wide range of manufacturing applications, one of which is the bending of metals. While there are multiple ways to induce bending in metals with lasers, this paper examines laser peen forming with femtosecond lasers on thin metals of 75-micrometer thickness perpendicular to the laser. The effects of multiple parameters, including laser energy, scan speed, scan pitch, and material preparation, on the bend angle of the metal are investigated. The bend angles are generated in both concave and convex directions, represented by positive and negative angles, respectively. While it is possible to create angles ranging from 0 to 90 degrees in the concave direction, the largest average convex angle found was only −26.2 degrees. The positive angles were created by high overlapping ratios and slow speeds. Furthermore, the concave angles were made by a smaller range of values than the convex angles, although this range could be expanded by higher laser energy. The positive angles also had a higher inconsistency than the negative angles, with an average standard deviation of 6.8 degrees versus an average of 2.6 degrees, respectively. The characterization of bending angles will allow for more accurate predictions, which will benefit traditional metal forming applications and more advanced applications such as origami structures with metal.

     
    more » « less
  3. We introduce an accurate and efficient method for characterizing surface wetting and interfacial properties, such as the contact angle made by a liquid droplet on a solid surface, and the vapor–liquid surface tension of a fluid. The method makes use of molecular simulations in conjunction with the indirect umbrella sampling technique to systematically wet the surface and estimate the corresponding free energy. To illustrate the method, we study the wetting of a family of Lennard-Jones surfaces by water. For surfaces with a wide range of attractions for water, we estimate contact angles using our method, and compare them with contact angles obtained using droplet shapes. Notably, our method is able to capture the transition from partial to complete wetting as surface–water attractions are increased. Moreover, the method is straightforward to implement and is computationally efficient, providing accurate contact angle estimates in roughly 5 nanoseconds of simulation time. 
    more » « less
  4. Abstract

    An experimental investigation and the optical modeling of the structural coloration produced from total internal reflection interference within 3D microstructures are described. Ray‐tracing simulations coupled with color visualization and spectral analysis techniques are used to model, examine, and rationalize the iridescence generated for a range of microgeometries, including hemicylinders and truncated hemispheres, under varying illumination conditions. An approach to deconstruct the observed iridescence and complex far‐field spectral features into its elementary components and systematically link them to ray trajectories that emanate from the illuminated microstructures is demonstrated. The results are compared with experiments, wherein microstructures are fabricated with methods such as chemical etching, multiphoton lithography, and grayscale lithography. Microstructure arrays patterned on surfaces with varying orientation and size lead to unique color‐traveling optical effects and highlight opportunities for how total internal reflection interference can be used to create customizable reflective iridescence. The findings herein provide a robust conceptual framework for rationalizing this multibounce interference mechanism and establish approaches for characterizing and tailoring the optical and iridescent properties of microstructured surfaces.

     
    more » « less
  5. When a plane shock hits a two-dimensional wedge head on, it experiences a reflection-diffraction process, and then a self-similar reflected shock moves outward as the original shock moves forward in time. The experimental, computational, and asymptotic analysis has indicated that various patterns occur, including regular reflection and Mach reflection. The von Neumann's conjectures on the transition from regular to Mach reflection involve the existence, uniqueness, and stability of regular shock reflection-diffraction configurations, generated by concave cornered wedges for compressible flow. In this paper, we discuss some recent developments in the study of the von Neumann's conjectures. More specifically, we discuss the uniqueness and stability of regular shock reflection-diffraction configurations governed by the potential flow equation in an appropriate class of solutions. We first show that the transonic shocks in the global solutions obtained in Chen-Feldman [19] are convex. Then we establish the uniqueness of global shock reflection-diffraction configurations with convex transonic shocks for any wedge angle larger than the detachment angle or the critical angle. Moreover, the solution under consideration is stable with respect to the wedge angle. Our approach also provides an alternative way of proving the existence of the admissible solutions established first in [19]. 
    more » « less