This paper presents a highly efficient single-layer substrate-integrated waveguide (SIW) based leaky-wave antenna (LWA) for the millimeter-wave unmanned aerial vehicle (UAV) communication system. The leaky wave-based radiating part of the unit cell includes a combination of two Y-shaped slots with 46° stretched V etched on the top SIW, resulting in a W-shaped structure. The proposed array achieves a high gain of 13.47 dBi for the frequency range of 56.3 GHz to 63.4 GHz covering the unlicensed band, with a fine matching level below -21 dB. Using the leaky wave antenna's frequency scanning capability, the proposed antenna exhibits a scanning range of 38°. The designed antenna shows a promising solution for the UAV-to-UAV applications due to its low profile and compactness and is well-suited for the single-layer low-cost printed circuit board fabrication process using Rogers RT 5880 as substrate. The radiation pattern for the achieved bandwidth shows an average half-power angular beamwidth of 12.1°, resulting in a radiation efficiency of more than 62% for the elements arranged uniformly at a distance of 0.456λ . Following an overall low-profile compact size of 6.48×4 λ corresponding to 3.24×0.2 cm and improved performance, the antenna achieves an elliptical polarization at 60 GHz for an axial ratio equal to 3.5 dBi.
more »
« less
Design of a Reconfigurable Filtenna with Constant Bandwidth for Enhanced 5G mmWave Communication and Spectrum Coexistence
A reconfigurable substrate integrated waveguide (SIW) filtenna operating in the 5G millimeter Wave (mmWave) band is presented, where varactors are integrated into the filtering-antenna structure to change the resonant frequency and coupling between the SIW resonators. The proposed structure allows for the reconfigurability of the antenna radiation frequency band in the range of 24-27 GHz, covering most of the 3GPP n258 band, with a constant bandwidth of 400 MHz and broadside radiation pattern. A prototype of the proposed mmWave filtenna is designed and fabricated, where the measurement results are in good agreement with the simulation. The proposed cost-effective and scalable filtenna is an ideal candidate for deployment in 5G wireless networks, with the ability to reduce adjacent channel interference (ACI) and enable passive spectrum coexistence with weather sensors in the 23.8 GHz band.
more »
« less
- Award ID(s):
- 2128077
- PAR ID:
- 10532360
- Publisher / Repository:
- IEEE Dynamic Spectrum, Access Networks (DySPAN) 2024
- Date Published:
- ISSN:
- 2334-3125
- ISBN:
- 978-1-6654-1339-8
- Format(s):
- Medium: X
- Location:
- Washington, DC
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A high-gain SIW elliptically polarized antenna combination of a dipole and loop antenna based on substrate-integrated waveguide (SIW) is proposed for millimeter-wave (mm-wave) applications. The dipole and loop antenna are differentially excited by a longitudinal slot etched on the top layer of SIW. The proposed combination of dipole and loop antenna forms a parallel electric dipole and magnetic dipole, which radiates two orthogonal electric field components and 90∘ phase difference in the far-field radiation when they are excited with the same phased signal. The proposed antenna achieves a realized gain of 8.346 dBi, with a radiation efficiency of 89.40% at 60 GHz.more » « less
-
This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands.more » « less
-
This paper presents a wideband low-profile dual-polarized patch antenna with helical-shaped L-probe feeding (HLF) for mmWave 5G mobile device applications. Parametric studies on the HLF structure are performed to identify the optimal specifications. As a result, the optimized antenna achieves a wide bandwidth of 5.4 GHz (24.2–29.6 GHz), good isolation > 18 dB between ports, and 5.1 dBi of good peak realized gain, which is experimentally verified with a 10× upscaled antenna. In addition, various one × four phased arrays with different port configurations and beamform capabilities are designed and simulated for the peak realized gain. The designed antenna array shows a high peak realized gain of 10 dBi, high isolation of 15 dB between the ports, and a small substrate thickness of 0.048λ0 (λ0 is the wavelength of 24.25 GHz). Compared to the state-of-the-art antennas, the designed dual-polarized antenna can operate in the frequency ranges of 24.25–29.6 GHz, including n257, n258, and n261 of the 5G new radio frequency range 2.more » « less
-
A D-band (110‒170 GHz) SiC substrate-integrated waveguide (SIW) is characterized on-wafer by two different vector network analyzers (VNAs): a 220-GHz single-sweep VNA and an 110-GHz VNA with WR8 (90‒140 GHz) and WR5 (140‒220 GHz) frequency extenders. To facilitate probing, the SIW input and output are transitioned to grounded coplanar waveguides (GCPWs). Two-tier calibration is used to de-embed the SIW-GCPW transitions as well as to extract the intrinsic SIW characteristics. In general, the two VNAs are in agreement and both result in an ultra-low insertion loss of approximately 0.2 dB/mm for the same SIW, despite stitching errors at band edges.more » « less
An official website of the United States government

