Abstract Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn‐dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high‐latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMFBy. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMFByis dominating and IMFBz ≥ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle.
more »
« less
Solar Wind‐Magnetosphere Coupling During High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA)
Abstract High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) intervals are driven by High Speed solar wind Streams (HSSs) during which the rapidly‐varying interplanetary magnetic field (IMF) produces high but intermittent dayside reconnection rates. This results in several days of large, quasi‐periodic enhancements in the auroral electrojet (AE) index. There has been debate over whether the enhancements in AE are produced by substorms or whether HILDCAAs represent a distinct class of magnetospheric dynamics. We investigate 16 HILDCAA events using the expanding/contracting polar cap model as a framework to understand the magnetospheric dynamics occurring during HSSs. Each HILDCAA onset shows variations in open magnetic flux, dayside and nightside reconnection rates, the cross‐polar cap potential, and AL that are characteristic of substorms. The enhancements in AE are produced by activity in the pre‐midnight sector, which is the typical substorm onset region. The periodicities present in the intermittent IMF determine the exact nature of the activity, producing a range of behaviors from a sequence of isolated substorms, through substorms which merge into one‐another, to almost continuous geomagnetic activity. The magnitude of magnetic fluctuations,dB/dt, in the pre‐midnight sector during HSSs is sufficient to produce a significant risk of Geomagnetically Induced Currents.
more »
« less
- Award ID(s):
- 2002574
- PAR ID:
- 10532390
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flow channels can extend across the polar cap from the dayside to the nightside auroral oval, where they lead to localized reconnection and auroral oval disturbances. Such flow channels can persist within the polar cap >1½ hours, can move azimuthally with direction controlled by IMF By, and may affect time and location of auroral oval disturbances. We have followed a polar cap arc as it moved duskward from Canada to Alaska for ∼2 h while connected to the oval. Two-dimensional ionospheric flows show an adjacent flow channel that moved westward with the arc and was a distinct feature of polar cap convection that locally impinged upon the outer boundary of the auroral oval. The flow channel’s interaction with the oval appears to have triggered two separate substorms during its trip across western Canada and Alaska, controlling the onset location and contributing to subsequent development of substorm activity within the oval. The first substorm (over Canada) occurred during approximately equatorward polar cap flow, whereas the second substorm (over Alaska) occurred as the polar cap arc and flow channel bent strongly azimuthally and appeared to “lay down” along the poleward boundary. The oval became unusually thin, leading to near contact between the polar cap arc and the brightening onset auroral arc within the oval. These observations illustrate the crucial role of polar cap flow channels in the time, location, and duration of space weather activity, and the importance of the duration and azimuthal motion of flow channels within the nightside polar cap.more » « less
-
Abstract “Polar” substorms are identified as substorm‐like disturbances that are exclusively observed at high geomagnetic latitudes (>70° MLAT) and are absent at lower latitudes. Although “polar” substorms typically occur during periods of quiet geomagnetic activity, it is still unclear whether they can develop under extremely quiet conditions when geoeffective space weather parameters are exceptionally low. Utilizing data from the IMAGE network across the Svalbard archipelago within the longitudinal sector of (∼108–114 Mlong), we examined 92 “extremely quiet geomagnetic” intervals from 2010 to 2020, which were associated with intervals of extremely slow solar wind (ESSWs,V < 300 km/s). We discovered that “polar” substorms can occur during ESSWs, but only with the presence of a negative Bz component. A total of 32 such events were identified from 17 ESSW intervals (∼19% of all ESSW intervals). We found that “polar” substorms during ESSWs display the primary characteristics of ordinary substorms, including the accompaniment of Pi1B geomagnetic pulsations, positive subauroral or mid‐latitude magnetic bays, a poleward shift of the westward electrojet, and auroral activity during their expansion phase. Additionally, it was found that the majority of “polar” substorm events during ESSWs (∼82%) were isolated substorms, developing solely in the pre‐midnight sector without disturbances in other longitudinal sectors. Several “polar” substorm events have been examined in detail.more » « less
-
Abstract During magnetospheric substorms, high‐latitude ionospheric plasma convection is known to change dramatically. How upper thermospheric winds change, however, has not been well understood, and conflicting conclusions have been reported. Here, we study the effect of substorms on high‐latitude upper thermospheric winds by taking advantage of a chain of scanning Doppler imagers (SDIs), THEMIS all‐sky imagers (ASIs), and the Poker Flat incoherent scatter radar (PFISR). SDIs provide mosaics of wind dynamics in response to substorms in two dimensions in space and as a function of time, while ASIs and PFISR concurrently monitor auroral emissions and ionospheric parameters. During the substorm growth phase, the classical two‐cell global circulation of neutral winds intensifies. After substorm onset, the zonal component of these winds is strongly suppressed in the midnight sector, whereas away from the midnight sector two‐cell circulation of winds is enhanced. Both pre and postonset enhancements are ≥100 m/s above the quiet‐time value, and postonset enhancement occurs over a broader latitude and local‐time area than preonset enhancement. The meridional wind component in the midnight and postmidnight sectors is accelerated southward to subauroral latitudes. Our findings suggest that substorms significantly modify the upper‐thermospheric wind circulation by changing the wind direction and speed and therefore are important for the entire magnetosphere‐ionosphere‐thermosphere system.more » « less
-
Abstract In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.more » « less
An official website of the United States government

