skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating NCE Convergence with Adaptive Normalizing Constant Computation
Noise Contrastive Estimation (NCE) is a widely used method for training generative models, typically used as an alternative to Maximum Likelihood Estimation (MLE) when exact computations of probability are hard. NCE trains generative models by discriminating between data and appropriately chosen noise distributions. Although NCE is statistically consistent, it suffers from slow convergence and high variance when there is small overlap between the noise and data distributions. Both these problems are related to the flatness of the NCE loss landscape. We propose an innovative approach to circumvent slow convergence rates by quick inference of the optimal normalizing constant at every gradient step. This allows the rest of the parameters to have more freedom during NCE optimization. We analyze the use of both binary search and the Bennett Acceptance Ratio (BAR) for quick computation of the normalizing constant and show improved performance for both methods on convex and non-convex settings.  more » « less
Award ID(s):
2238125
PAR ID:
10532425
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Open Review
Date Published:
Format(s):
Medium: X
Location:
https://openreview.net/forum?id=HTckEOqJsP
Sponsoring Org:
National Science Foundation
More Like this
  1. Noise Contrastive Estimation (NCE) is a popular approach for learning probability density functions parameterized up to a constant of proportionality. The main idea is to design a classification problem for distinguishing training data from samples from an easy-to-sample noise distribution q, in a manner that avoids having to calculate a partition function. It is well-known that the choice of q can severely impact the computational and statistical efficiency of NCE. In practice, a common choice for q is a Gaussian which matches the mean and covariance of the data. In this paper, we show that such a choice can result in an exponentially bad (in the ambient dimension) conditioning of the Hessian of the loss, even for very simple data distributions. As a consequence, both the statistical and algorithmic complexity for such a choice of q will be problematic in practice, suggesting that more complex and tailored noise distributions are essential to the success of NCE. 
    more » « less
  2. Recent research has developed several Monte Carlo methods for estimating the normalization constant (partition function) based on the idea of annealing. This means sampling successively from a path of distributions that interpolate between a tractable "proposal" distribution and the unnormalized "target" distribution. Prominent estimators in this family include annealed importance sampling and annealed noise-contrastive estimation (NCE). Such methods hinge on a number of design choices: which estimator to use, which path of distributions to use and whether to use a path at all; so far, there is no definitive theory on which choices are efficient. Here, we evaluate each design choice by the asymptotic estimation error it produces. First, we show that using NCE is more efficient than the importance sampling estimator, but in the limit of infinitesimal path steps, the difference vanishes. Second, we find that using the geometric path brings down the estimation error from an exponential to a polynomial function of the parameter distance between the target and proposal distributions. Third, we find that the arithmetic path, while rarely used, can offer optimality properties over the universally-used geometric path. In fact, in a particular limit, the optimal path is arithmetic. Based on this theory, we finally propose a two-step estimator to approximate the optimal path in an efficient way. 
    more » « less
  3. Deep generative models parametrized up to a normalizing constant (e.g. energy-based models) are difficult to train by maximizing the likelihood of the data because the likelihood and/or gradients thereof cannot be explicitly or efficiently written down. Score matching is a training method, whereby instead of fitting the likelihood for the training data, we instead fit the score function, obviating the need to evaluate the partition function. Though this estimator is known to be consistent, it's unclear whether (and when) its statistical efficiency is comparable to that of maximum likelihood---which is known to be (asymptotically) optimal. We initiate this line of inquiry in this paper and show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated---i.e. the Poincar\'e, log-Sobolev and isoperimetric constant---quantities which govern the mixing time of Markov processes like Langevin dynamics. Roughly, we show that the score matching estimator is statistically comparable to the maximum likelihood when the distribution has a small isoperimetric constant. Conversely, if the distribution has a large isoperimetric constant---even for simple families of distributions like exponential families with rich enough sufficient statistics---score matching will be substantially less efficient than maximum likelihood. We suitably formalize these results both in the finite sample regime, and in the asymptotic regime. Finally, we identify a direct parallel in the discrete setting, where we connect the statistical properties of pseudolikelihood estimation with approximate tensorization of entropy and the Glauber dynamics. 
    more » « less
  4. Abstract Monitoring machine health and product quality enables predictive maintenance that optimizes repairs to minimize factory downtime. Data-driven intelligent manufacturing often relies on probabilistic techniques with intractable distributions. For example, generative models of data distributions can balance fault classes with synthetic data, and sampling the posterior distribution of hidden model parameters enables prognosis of degradation trends. Normalizing flows can address these problems while avoiding the training instability or long inference times of other generative Deep Learning (DL) models like Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), and diffusion networks. To evaluate normalizing flows for manufacturing, experiments are conducted to synthesize surface defect images from an imbalanced data set and estimate parameters of a tool wear degradation model from limited observations. Results show that normalizing flows are an effective, multi-purpose DL architecture for solving these problems in manufacturing. Future work should explore normalizing flows for more complex degradation models and develop a framework for likelihood-based anomaly detection. Code is available at https://github.com/uky-aism/flows-for-manufacturing. 
    more » « less
  5. Approximating probability distributions can be a challenging task, particularly when they are supported over regions of high geometrical complexity or exhibit multiple modes. Annealing can be used to facilitate this task which is often combined with constant a priori selected increments in inverse temperature. However, using constant increments limits the computational efficiency due to the inability to adapt to situations where smooth changes in the annealed density could be handled equally well with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that automatically adjusts the temperature increments based on the expected change in the Kullback-Leibler divergence between two distributions with a sufficiently close annealing temperature. AdaAnn is easy to implement and can be integrated into existing sampling approaches such as normalizing flows for variational inference and Markov chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn scheduler for variational inference with normalizing flows on a number of examples, including posterior estimation of parameters for dynamical systems and probability density approximation in multimodal and high-dimensional settings. 
    more » « less