This is the second in a series of papers in which we use JWST Mid Infrared Instrument multiband imaging to measure the warm dust emission in a sample of 31 multiply imaged quasars, to be used as a probe of the particle nature of dark matter. We present measurements of the relative magnifications of the strongly lensed warm dust emission in a sample of nine systems. The warm dust region is compact and sensitive to perturbations by populations of haloes down to masses $\sim 10^6$ M$_{\odot }$. Using these warm dust flux-ratio measurements in combination with five previous narrow-line flux-ratio measurements, we constrain the halo mass function. In our model, we allow for complex deflector macromodels with flexible third- and fourth-order multipole deviations from ellipticity, and we introduce an improved model of the tidal evolution of subhaloes. We constrain a WDM model and find an upper limit on the half-mode mass of $10^{7.6}\, {\rm M}_\odot$ at posterior odds of 10:1. This corresponds to a lower limit on a thermally produced dark matter particle mass of 6.1 keV. This is the strongest gravitational lensing constraint to date, and comparable to those from independent probes such as the Ly $\alpha$ forest and Milky Way satellite galaxies.
This content will become publicly available on May 2, 2025
- Award ID(s):
- 2205100
- PAR ID:
- 10532438
- Publisher / Repository:
- Arxiv
- Date Published:
- Journal Name:
- Monthly notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The flux ratios of gravitationally lensed quasars provide a powerful probe of the nature of dark matter. Importantly, these ratios are sensitive to small-scale structure, irrespective of the presence of baryons. This sensitivity may allow us to study the halo mass function even below the scales where galaxies form observable stars. For accurate measurements, it is essential that the quasar’s light is emitted from a physical region of the quasar with an angular scale of milliarcseconds or larger; this minimizes microlensing effects by stars within the deflector. The warm dust region of quasars fits this criterion, as it has parsec-size physical scales and dominates the spectral energy distribution of quasars at wavelengths greater than 10 μm. The JWST Mid-Infrared Instrument is adept at detecting redshifted light in this wavelength range, offering both the spatial resolution and sensitivity required for accurate gravitational lensing flux ratio measurements. Here, we introduce our survey designed to measure the warm dust flux ratios of 31 lensed quasars. We discuss the flux-ratio measurement technique and present results for the first target, DES J0405-3308. We find that we can measure the quasar warm dust flux ratios with 3 per cent precision. Our simulations suggest that this precision makes it feasible to detect the presence of 107 M⊙ dark matter haloes at cosmological distances. Such haloes are expected to be completely dark in cold dark matter models.
-
ABSTRACT Strong gravitational lensing provides a purely gravitational means to infer properties of dark matter haloes and thereby constrain the particle nature of dark matter. Strong lenses sometimes appear as four lensed images of a background quasar accompanied by spatially resolved emission from the quasar host galaxy encircling the main deflector (lensed arcs). We present methodology to simultaneously reconstruct lensed arcs and relative image magnifications (flux ratios) in the presence of full populations of subhaloes and line-of-sight haloes. To this end, we develop a new approach for multiplane ray tracing that accelerates lens mass and source light reconstruction by factors of $\sim\!\! 100\!\!-\!\!1000$. Using simulated data, we show that simultaneous reconstruction of lensed arcs and flux ratios isolates small-scale perturbations to flux ratios by dark matter substructure from uncertainties associated with the main deflector mass profile on larger angular scales. Relative to analyses that use only image positions and flux ratios to constrain the lens model, incorporating arcs strengthens likelihood ratios penalizing warm dark matter with a suppression scale $m_{\rm {hm}} / {\rm M}_{\odot }$ in the ranges of $\left[10^7 \!\!-\!\! 10^{7.5}\right]$, $\left[10^{7.5} \!\!-\!\! 10^{8}\right]$, $\left[10^8 \!\!-\!\! 10^{8.5}\right]$, and $\left[10^{8.5} \!\!-\!\! 10^{9}\right]$ by factors of 1.3, 2.5, 5.6, and 13.1, respectively, for a cold dark matter ground truth. The 95 per cent exclusion limit improves by 0.5 dex in $\log _{10} m_{\rm {hm}}$. The enhanced sensitivity to low-mass haloes enabled by these methods pushes the observational frontier of substructure lensing to the threshold of galaxy formation, enabling stringent tests of any theory that alters the properties of dark matter haloes.
-
ABSTRACT One of the frontiers for advancing what is known about dark matter lies in using strong gravitational lenses to characterize the population of the smallest dark matter haloes. There is a large volume of information in strong gravitational lens images – the question we seek to answer is to what extent we can refine this information. To this end, we forecast the detectability of a mixed warm and cold dark matter scenario using the anomalous flux ratio method from strong gravitational lensed images. The halo mass function of the mixed dark matter scenario is suppressed relative to cold dark matter but still predicts numerous low-mass dark matter haloes relative to warm dark matter. Since the strong lensing signal receives a contribution from a range of dark matter halo masses and since the signal is sensitive to the specific configuration of dark matter haloes, not just the halo mass function, degeneracies between different forms of suppression in the halo mass function, relative to cold dark matter, can arise. We find that, with a set of lenses with different configurations of the main deflector and hence different sensitivities to different mass ranges of the halo mass function, the different forms of suppression of the halo mass function between the warm dark matter model and the mixed dark matter model can be distinguished with 40 lenses with Bayesian odds of 30:1.
-
ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrain the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $68 \, {\rm per\, cent}$ CI, we infer $2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to mean projected mass fraction $\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$. At $95 \, {\rm per\, cent}$ CI, we obtain a lower bound on the projected mass of $0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to $\bar{f}_{\rm {sub}} \gt 0.005$. These results agree with the predictions of cold dark matter.more » « less