In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves.
more »
« less
Topological k-Metrics
Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "k-wise distance relationships" d(x_1, …, x_k) among points x_1, …, x_k ∈ X for k > 2. To that end, Gähler (Math. Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality d(x₁, x₂) ≤ d(x₁, y) + d(y, x₂) to the "simplex inequality" d(x_1, …, x_k) ≤ ∑_{i=1}^k d(x_1, …, x_{i-1}, y, x_{i+1}, …, x_k). (The definition holds for any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.) In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary k-metrics, which generalize 𝓁_p metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fréchet embedding (isometric embedding into 𝓁_∞) and isometric embedding of all tree metrics into 𝓁₁. We also study relationships between families of (strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics.
more »
« less
- Award ID(s):
- 1941086
- PAR ID:
- 10532445
- Editor(s):
- Mulzer, Wolfgang; Phillips, Jeff M
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 293
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-316-4
- Page Range / eLocation ID:
- 293-293
- Subject(s) / Keyword(s):
- k-metrics metric embeddings computational topology simplicial complexes Theory of computation → Computational geometry
- Format(s):
- Medium: X Size: 13 pages; 834616 bytes Other: application/pdf
- Size(s):
- 13 pages 834616 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by applications to classification problems on metric data, we study Weighted Metric Clustering problem: given a metric d over n points and a k x k symmetric matrix A with non-negative entries, the goal is to find a k-partition of these points into clusters C1,...,Ck, while minimizing the sum of A[i,j] * d(u,v) over all pairs of clusters Ci and Cj and all pairs of points u from Ci and v from Cj. Specific choices of A lead to Weighted Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as Min-Uncut, Min-k-Sum, Min-k-Cut, and more.Our main result is that Weighted Metric Clustering admits a polynomial-time approximation scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear programming relaxation. This subsumes several prior works, unifies many of the techniques for various metric clustering objectives, and yields a PTAS for several new problems, including metric clustering on manifolds and a new family of hierarchical clustering objectives. Our experiments on the hierarchical clustering objective show that it better captures the ground-truth structural information compared to the popular Dasgupta's objective.more » « less
-
Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points $$[\x_1, \x_2, \ldots, \x_n] = \X \in \R^{d \times n}$$ and a vector $$\y \in \R^d$$, the goal is to find coefficients $$\w \in \R^n$$ so that $$\X \w \approx \y$$, subject to some desired structure on $$\w$$. In this work we seek $$\w$$ that forms a local reconstruction of $$\y$$ by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of $$\X$$ that are close to $$\y$$ when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of $$\X$$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$, thereby providing local sparse solutions when $$d \ll n$$. Under the same condition we also show that for any $$\y$$ contained in the convex hull of $$\X$$ there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing $$\y$$. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of $$\X$$. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex.more » « less
-
Abstract We establish that any subset of ℝ d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of any fixed two-dimensional rectangle provided d ⩾ 4. We further present an extension of this result to configurations that are the product of two non-degenerate simplices; specifically we show that if Δ k 1 and Δ k 2 are two fixed non-degenerate simplices of k 1 + 1 and k 2 + 1 points respectively, then any subset of ℝ d of positive upper Banach density with d ⩾ k 1 + k 2 + 6 will necessarily contain an isometric copy of all sufficiently large dilates of Δ k 1 × Δ k 2 . A new direct proof of the fact that any subset of ℝ d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of any fixed non-degenerate simplex of k + 1 points provided d ⩾ k + 1, a result originally due to Bourgain, is also presented.more » « less
-
We study the problem of supervised learning a metric space under discriminative constraints. Given a universe X and sets S, D subset binom{X}{2} of similar and dissimilar pairs, we seek to find a mapping f:X -> Y, into some target metric space M=(Y,rho), such that similar objects are mapped to points at distance at most u, and dissimilar objects are mapped to points at distance at least l. More generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified pairs). We propose approximation algorithms for various versions of this problem, for the cases of Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect information we present approximation algorithms that run in quasi-polynomial time (QPTAS). We also present an exact algorithm for learning line metric spaces with perfect information in polynomial time. Our algorithms use a combination of tools from metric embeddings and graph partitioning, that could be of independent interest.more » « less
An official website of the United States government

