We present the results of the charge ratio ( ) and polarization ( ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be at , where is the muon energy and is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the model of . We also measured the muon polarization at the production location to be at the muon momentum of at the surface of the mountain; this also suggests a tension with the Honda flux model of . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024 
                        more » 
                        « less   
                    
                            
                            Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm
                        
                    
    
            We present details on a new measurement of the muon magnetic anomaly, . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is (0.19 ppm). Published by the American Physical Society2024 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10532548
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 3
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The first measurement of the asymmetry of the decay rate ( ) and the average ( ) and asymmetry ( ) of the forward-backward asymmetry in the muon system of decays is reported. The measurement is performed using a data sample of proton-proton collisions, recorded by the LHCb experiment from 2016 to 2018 at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of . The asymmetries are measured in two regions of dimuon mass near the -meson mass peak. The dimuon-mass integrated results are , , , where the first uncertainty is statistical and the second systematic. The results are consistent with the conservation of symmetry and the Standard Model expectations. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
- 
            We present complete results for the hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment in the short- and intermediate-distance window regions, which account for roughly 10% and 35% of the total HVP contribution to , respectively. In particular, we perform lattice-QCD calculations for the isospin-symmetric connected and disconnected contributions, as well as corrections due to strong-isospin breaking. For the short-distance window observables, we investigate the so-called log-enhancement effects as well as the significant oscillations associated with staggered quarks in this region. For the dominant, isospin-symmetric light-quark-connected contribution, we obtain and . We use Bayesian model averaging to fully estimate the covariance matrix between the individual contributions. Our determinations of the complete window contributions are and . This work is part of our ongoing effort to compute all contributions to HVP with an overall uncertainty at the few-permille level. Published by the American Physical Society2025more » « less
- 
            We measure the complete set of angular coefficients for exclusive decays ( , ). Our analysis uses the full Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the transition and the Cabibbo-Kobayashi-Maskawa matrix element . Using recent lattice QCD calculations for the hadronic form factors, we find using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024more » « less
- 
            The first results of the study of high-energy electron neutrino ( ) and muon neutrino ( ) charged-current interactions in the emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the volume was analyzed after exposure to of data. Four (eight) ( ) interaction candidate events are observed with a statistical significance of ( ). This is the first direct observation of interactions at a particle collider and includes the highest-energy and ever detected from an artificial source. The interaction cross section per nucleon is measured over an energy range of 560–1740 GeV (520–1760 GeV) for ( ) to be [ ], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    