skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 1, 2025

Title: Path Sampling Methods for Differentiable Rendering
We introduce a suite of path sampling methods for differentiable rendering of scene parameters that do not induce visibility-driven discontinuities, such as BRDF parameters. We begin by deriving a path integral formulation for differentiable rendering of such parameters, which we then use to derive methods that importance sample paths according to this formulation. Our methods are analogous to path tracing and path tracing with next event estimation for primal rendering, have linear complexity, and can be implemented efficiently using path replay backpropagation. Our methods readily benefit from differential BRDF sampling routines, and can be further enhanced using multiple importance sampling and a loss-aware pixel-space adaptive sampling procedure tailored to our path integral formulation. We show experimentally that our methods reduce variance in rendered gradients by potentially orders of magnitude, and thus help accelerate inverse rendering optimization of BRDF parameters.  more » « less
Award ID(s):
2008123 1730147
NSF-PAR ID:
10532557
Author(s) / Creator(s):
;
Publisher / Repository:
The Eurographics Association
Date Published:
Subject(s) / Keyword(s):
CCS Concepts: Computing methodologies -> Ray tracing CCS Concepts Computing methodologies > Ray tracing
Format(s):
Medium: X Size: 13 pages
Size(s):
13 pages
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics-based differentiable rendering is becoming increasingly crucial for tasks in inverse rendering and machine learning pipelines. To address discontinuities caused by geometric boundaries and occlusion, two classes of methods have been proposed: 1) the edge-sampling methods that directly sample light paths at the scene discontinuity boundaries, which require nontrivial data structures and precomputation to select the edges, and 2) the reparameterization methods that avoid discontinuity sampling but are currently limited to hemispherical integrals and unidirectional path tracing.

    We introduce a new mathematical formulation that enjoys the benefits of both classes of methods. Unlike previous reparameterization work that focused on hemispherical integral, we derive the reparameterization in the path space. As a result, to estimate derivatives using our formulation, we can apply advanced Monte Carlo rendering methods, such as bidirectional path tracing, while avoiding explicit sampling of discontinuity boundaries. We show differentiable rendering and inverse rendering results to demonstrate the effectiveness of our method.

     
    more » « less
  2. Pixel reconstruction filters play an important role in physics-based rendering and have been thoroughly studied. In physics-based differentiable rendering, however, the proper treatment of pixel filters remains largely under-explored. We present a new technique to efficiently differentiate pixel reconstruction filters based on the path-space formulation. Specifically, we formulate the pixel boundary integral that models discontinuities in pixel filters and introduce new antithetic sampling methods that support differentiable path sampling methods, such as adjoint particle tracing and bidirectional path tracing. We demonstrate both the need and efficacy of antithetic sampling when estimating this integral, and we evaluate its effectiveness across several differentiable- and inverse-rendering settings. 
    more » « less
  3. Boundary integrals are unique to physics-based differentiable rendering and crucial for differentiating with respect to object geometry. Under the differential path integral framework---which has enabled the development of sophisticated differentiable rendering algorithms---the boundary components are themselves path integrals. Previously, although the mathematical formulation of boundary path integrals have been established, efficient estimation of these integrals remains challenging. In this paper, we introduce a new technique to efficiently estimate boundary path integrals. A key component of our technique is a primary-sample-space guiding step for importance sampling of boundary segments. Additionally, we show multiple importance sampling can be used to combine multiple guided samplings. Lastly, we introduce an optional edge sorting step to further improve the runtime performance. We evaluate the effectiveness of our method using several differentiable-rendering and inverse-rendering examples and provide comparisons with existing methods for reconstruction as well as gradient quality. 
    more » « less
  4. Conventional rendering techniques are primarily designed and optimized for single-frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re-rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light-transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non-zero residual-transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient-domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed-ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re-rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade-offs. 
    more » « less
  5. Abstract

    Conventional rendering techniques are primarily designed and optimized for single‐frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re‐rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light‐transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non‐zero residual‐transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient‐domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed‐ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re‐rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade‐offs.

     
    more » « less