Abstract Within this work, a new class of sequence‐defined heteromultivalent glycomacromolecules bearing lactose residues and nonglycosidic motifs for probing glycoconjugate recognition in carbohydrate recognition domain (CRD) of galectin‐3 is presented. Galectins, a family of β‐galactoside‐binding proteins, are known to play crucial roles in different signaling pathways involved in tumor biology. Thus, research has focused on the design and synthesis of galectin‐targeting ligands for use as diagnostic markers or potential therapeutics. Heteromultivalent precision glycomacromolecules have the potential to serve as ligands for galectins. In this work, multivalency and the introduction of nonglycosidic motifs bearing either neutral, amine, or sulfonated/sulfated groups are used to better understand binding in the galectin‐3 CRD. Enzyme‐linked immunosorbent assays and surface plasmon resonance studies are performed, revealing a positive impact of the sulfonated/sulfated nonglycosidic motifs on galectin‐3 binding but not on galectin‐1 binding. Selected compounds are then tested with galectin‐3 positive MCF 7 breast cancer cells using an in vitro would scratch assay. Preliminary results demonstrate a differential biological effect on MCF 7 cells with high galectin‐3 expression in comparison to an HEK 293 control with low galectin‐3 expression, indicating the potential for sulfonated/sulfated heteromultivalent glycomacromolecules to serve as preferential ligands for galectin‐3 targeting.
more »
« less
CUREs for high-level Galectin-3 expression
Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds β-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl β-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.
more »
« less
- Award ID(s):
- 2227874
- PAR ID:
- 10532708
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Protein Expression and Purification
- Volume:
- 221
- Issue:
- C
- ISSN:
- 1046-5928
- Page Range / eLocation ID:
- 106516
- Subject(s) / Keyword(s):
- Galectins Galectin-3 Carbohydrate recognition domain Autoinduction Protein expression Lac repressor Time-dependent fluorescence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays withN,N′-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.more » « less
-
Abstract Galectins, highly conserved β-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish’s proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.more » « less
-
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous (“self”) carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind (“non-self”) glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a newparadigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been “subverted” by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host’s immune responses.more » « less
-
Poly(amidoamine) (PAMAM) dendrimers functionalized with ligands that are designed to interact with biological receptors are important macromolecules for the elucidation and mediation of biological recognition processes. Specifically, carbohydrate functionalized dendrimers are useful synthetic multivalent systems for the study of multivalent protein–carbohydrate interactions. For example, lactose functionalized glycodendrimers can be used to discern the function of galectins, galactoside-binding proteins that are often over-expressed during cancer progression. In order to effectively interpret cancer cellular assays using glycodendrimers, however, their properties in the presence of cells must first be assessed. Macromolecules that are taken up by cells would be expected to have access to many different cell signaling pathways and modes of action that solely extracellular macromolecules cannot utilize. In addition, macromolecules that display cellular toxicity could not be used as drug delivery vehicles. Here, we report fundamental studies of cellular toxicity, viability, and uptake with four generations of lactose functionalized PAMAM dendrimers. In all cases, the dendrimers are readily taken up by the cells but do not display any significant cellular toxicity. The glycodendrimers also increase cellular apoptosis, suggesting that they may abrogate the antiapoptotic protections afforded by galectin- 3 to cancer cells. The results reported here indicate that appropriately functionalized PAMAM dendrimers can be used as nontoxic tools for the study and mediation of both extra and intracellular cancer processes.more » « less
An official website of the United States government

