skip to main content


This content will become publicly available on February 1, 2025

Title: Deep temporal clustering features for speech emotion recognition
Deep clustering is a popular unsupervised technique for feature representation learning. We recently proposed the chunk-based DeepEmoCluster framework for speech emotion recognition (SER) to adopt the concept of deep clustering as a novel semi-supervised learning (SSL) framework, which achieved improved recognition performances over conventional reconstruction-based approaches. However, the vanilla DeepEmoCluster lacks critical sentence- level temporal information that is useful for SER tasks. This study builds upon the DeepEmoCluster framework, creating a powerful SSL approach that leverages temporal information within a sentence. We propose two sentence-level temporal modeling alternatives using either the temporal-net or the triplet loss function, resulting in a novel temporal-enhanced DeepEmoCluster framework to capture essential temporal information. The key contribution to achieving this goal is the proposed sentence-level uniform sampling strategy, which preserves the original temporal order of the data for the clustering process. An extra network module (e.g., gated recurrent unit) is utilized for the temporal-net option to encode temporal information across the data chunks. Alternatively, we can impose additional temporal constraints by using the triplet loss function while training the DeepEmoCluster framework, which does not increase model complexity. Our experimental results based on the MSP-Podcast corpus demonstrate that the proposed temporal-enhanced framework significantly outperforms the vanilla DeepEmoCluster framework and other existing SSL approaches in regression tasks for the emotional attributes arousal, dominance, and valence. The improvements are observed in fully-supervised learning or SSL implementations. Further analyses validate the effectiveness of the proposed temporal modeling, showing (1) high temporal consistency in the cluster assignment, and (2) well-separated emotional patterns in the generated clusters.  more » « less
Award ID(s):
2016719
PAR ID:
10532844
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
na
Date Published:
Journal Name:
Speech Communication
Volume:
157
Issue:
C
ISSN:
0167-6393
Page Range / eLocation ID:
103027
Subject(s) / Keyword(s):
Deep clustering, Temporal modeling, Semi-supervised learning, Speech emotion recognition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Semi-supervised learning (SSL) is an appealing approach to resolve generalization problem for speech emotion recognition (SER) systems. By utilizing large amounts of unlabeled data, SSL is able to gain extra information about the prior distribution of the data. Typically, it can lead to better and robust recognition performance. Existing SSL approaches for SER include variations of encoder-decoder model structures such as autoencoder (AE) and variational autoencoders (VAEs), where it is difficult to interpret the learning mechanism behind the latent space. In this study, we introduce a new SSL framework, which we refer to as the DeepEmoCluster framework, for attribute-based SER tasks. The DeepEmoCluster framework is an end-to-end model with mel-spectrogram inputs, which combines a self-supervised pseudo labeling classification network with a supervised emotional attribute regressor. The approach encourages the model to learn latent representations by maximizing the emotional separation of K-means clusters. Our experimental results based on the MSP-Podcast corpus indicate that the DeepEmoCluster framework achieves competitive prediction performances in fully supervised scheme, outperforming baseline methods in most of the conditions. The approach can be further improved by incorporating extra unlabeled set. Moreover, our experimental results explicitly show that the latent clusters have emotional dependencies, enriching the geometric interpretation of the clusters. 
    more » « less
  2. null (Ed.)
    A critical issue of current speech-based sequence-to-one learning tasks, such as speech emotion recognition (SER), is the dynamic temporal modeling for speech sentences with different durations. The goal is to extract an informative representation vector of the sentence from acoustic feature sequences with varied length. Traditional methods rely on static descriptions such as statistical functions or a universal background model (UBM), which are not capable of characterizing dynamic temporal changes. Recent advances in deep learning architectures provide promising results, directly extracting sentence-level representations from frame-level features. However, conventional cropping and padding techniques that deal with varied length sequences are not optimal, since they truncate or artificially add sentence-level information. Therefore, we propose a novel dynamic chunking approach, which maps the original sequences of different lengths into a fixed number of chunks that have the same duration by adjusting their overlap. This simple chunking procedure creates a flexible framework that can incorporate different feature extractions and sentence-level temporal aggregation approaches to cope, in a principled way, with different sequence-to-one tasks. Our experimental results based on three databases demonstrate that the proposed framework provides: 1) improvement in recognition accuracy, 2) robustness toward different temporal length predictions, and 3) high model computational efficiency advantages. 
    more » « less
  3. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less
  4. null (Ed.)
    Speech emotion recognition (SER) plays an important role in multiple fields such as healthcare, human-computer interaction (HCI), and security and defense. Emotional labels are often annotated at the sentence-level (i.e., one label per sentence), resulting in a sequence-to-one recognition problem. Traditionally, studies have relied on statistical descriptions, which are com- puted over time from low level descriptors (LLDs), creating a fixed dimension sentence-level feature representation regardless of the duration of the sentence. However sentence-level features lack temporal information, which limits the performance of SER systems. Recently, new deep learning architectures have been proposed to model temporal data. An important question is how to extract emotion-relevant features with temporal infor- mation. This study proposes a novel data processing approach that extracts a fixed number of small chunks over sentences of different durations by changing the overlap between these chunks. The approach is flexible, providing an ideal frame- work to combine gated network or attention mechanisms with long short-term memory (LSTM) networks. Our experimental results based on the MSP-Podcast dataset demonstrate that the proposed method not only significantly improves recognition accuracy over alternative temporal-based models relying on LSTM, but also leads to computational efficiency. 
    more » « less
  5. Previous studies on speech emotion recognition (SER) with categorical emotions have often formulated the task as a single-label classification problem, where the emotions are considered orthogonal to each other. However, previous studies have indicated that emotions can co-occur, especially for more ambiguous emotional sentences (e.g., a mixture of happiness and sur- prise). Some studies have regarded SER problems as a multi-label task, predicting multiple emotional classes. However, this formulation does not leverage the relation between emotions during training, since emotions are assumed to be independent. This study explores the idea that emotional classes are not necessarily independent and its implications on training SER models. In particular, we calculate the frequency of co-occurring emotions from perceptual evaluations in the train set to generate a matrix with class-dependent penalties, punishing more mistakes between distant emotional classes. We integrate the penalization matrix into three existing label-learning approaches (hard-label, multi-label, and distribution-label learn- ing) using the proposed modified loss. We train SER models using the penalty loss and commonly used cost functions for SER tasks. The evaluation of our proposed penalization matrix on the MSP-Podcast corpus shows important relative improvements in macro F1-score for hard-label learning (17.12%), multi-label learning (12.79%), and distribution-label learning (25.8%). 
    more » « less