skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Curvature‐Assisted Vesicle Explosion Under Light‐Induced Asymmetric Oxidation
Abstract Exposure of cell membranes to reactive oxygen species can cause oxidation of membrane lipids. Oxidized lipids undergo drastic conformational changes, compromising the mechanical integrity of the membrane and causing cell death. For giant unilamellar vesicles, a classic cell mimetic system, a range of mechanical responses under oxidative assault has been observed including formation of nanopores, transient micron‐sized pores, and total sudden catastrophic collapse (i.e., explosion). However, the physical mechanism regarding how lipid oxidation causes vesicles to explode remains elusive. Here, with light‐induced asymmetric oxidation experiments, the role of spontaneous curvature on vesicle instability and its link to the conformational changes of oxidized lipid products is systematically investigated. A comprehensive membrane model is proposed for pore‐opening dynamics incorporating spontaneous curvature and membrane curling, which captures the experimental observations well. The kinetics of lipid oxidation are further characterized and how light‐induced asymmetric oxidation generates spontaneous curvature in a non‐monotonic temporal manner is rationalized. Using the framework, a phase diagram with an analytical criterion to predict transient pore formation or catastrophic vesicle collapse is provided. The work can shed light on understanding biomembrane stability under oxidative assault and strategizing release dynamics of vesicle‐based drug delivery systems.  more » « less
Award ID(s):
2323046 2323045
PAR ID:
10532884
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
38
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we present a generalized biophysical model incorporating a stochastic account of membrane rupture to describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e. explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance release in therapeutic carriers. 
    more » « less
  2. We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A. , 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force–distortion relationship for the Piezo dome, from which we deduce the Piezo dome’s intrinsic radius of curvature, 42 ± 12 nm, and bending stiffness, 18 ± 2.1   k B T , in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo’s intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating. 
    more » « less
  3. null (Ed.)
    Building upon our previous studies on interactions of amphiphilic Janus nanoparticles with glass-supported lipid bilayers, we study here how these Janus nanoparticles perturb the structural integrity and induce shape instabilities of membranes of giant unilamellar vesicles (GUVs). We show that 100 nm amphiphilic Janus nanoparticles disrupt GUV membranes at a threshold particle concentration similar to that in supported lipid bilayers, but cause drastically different membrane deformations, including membrane wrinkling, protrusion, poration, and even collapse of entire vesicles. By combining experiments with molecular simulations, we reveal how Janus nanoparticles alter local membrane curvature and collectively compress the membrane to induce shape transformation of vesicles. Our study demonstrates that amphiphilic Janus nanoparticles disrupt vesicle membranes differently and more effectively than uniform amphiphilic particles. 
    more » « less
  4. The structure and dynamics of lipid membranes in the presence of extracellular macromolecules are critical for cell membrane functions and many pharmaceutical applications. The pathogen virulence-suppressing end-phosphorylated polyethylene glycol (PEG) triblock copolymer ( Pi-ABAPEG ) markedly changes the interactions with lipid vesicle membranes and prevents PEG-induced vesicle phase separation in contrast to the unphosphorylated copolymer ( ABAPEG ). Pi-ABAPEG weakly absorbs on the surface of lipid vesicle membranes and slightly changes the structure of 1,2-dimyristoyl- sn-glycero -3-phosphocholine ( DMPC ) unilamellar vesicles at 37 °C, as evidenced by small angle neutron scattering. X-ray reflectivity measurements confirm the weak adsorption of Pi-ABAPEG on DMPC monolayer, resulting in a more compact DMPC monolayer structure. Neutron spin-echo results show that the adsorption of Pi-ABAPEG on DMPC vesicle membranes increases the membrane bending modulus κ . 
    more » « less
  5. Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding. 
    more » « less