Abstract Using genetic code expansion (GCE) to encode bioorthogonal chemistry has emerged as a promising method for protein labeling, both in vitro and within cells. Here, we demonstrate that tetrazine amino acids incorporated into proteins are highly tunable and have extraordinary potential for fast and quantitative bioorthogonal ligations. We describe the synthesis and characterize reaction rates of 29 tetrazine amino acids (20 of which are new) and compare their encoding ability into proteins using evolved Tet ncAA encoding tRNA/RS pairs. For these systems, we characterized on-protein Tet stability, reaction rates, and ligation extents, as the utility of a bioorthogonal labeling group depends on its stability and reactivity when encoded into proteins. By integrating data on encoding efficiency, selectivity, on-protein stability, and in-cell labeling for Tet tRNA/RS pairs, we developed the smallest, fastest, and most stable Tet system to date. This was achieved by introducing fluorine substituents to Tet4, resulting in reaction rates at the 10⁶ M⁻¹s⁻¹ level while minimizing degradation. This study expands the toolbox of bioorthogonal reagents for Tet-sTCO-based, site-specific protein labeling and demonstrates that the Tet-ncAA is a uniquely tunable, highly reactive, and encodable bioorthogonal functional group. These findings provide a foundation to further explore Tet-ncAA encoding and reactivity.
more »
« less
Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations
Quantitative labeling of biomolecules is necessary to advance areas of antibody–drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.
more »
« less
- Award ID(s):
- 2054824
- PAR ID:
- 10533062
- Publisher / Repository:
- Bioconjugation Chemistry
- Date Published:
- Journal Name:
- Bioconjugate Chemistry
- Volume:
- 34
- Issue:
- 12
- ISSN:
- 1043-1802
- Page Range / eLocation ID:
- 2243 to 2254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract By transplanting identity elements into E. coli tRNAfMet, we have engineered an orthogonal initiator tRNA (itRNATy2) that is a substrate for Methanocaldococcus jannaschii TyrRS. We demonstrate that itRNATy2can initiate translation in vivo with aromatic non‐canonical amino acids (ncAAs) bearing diverse sidechains. Although the initial system suffered from low yields, deleting redundant copies of tRNAfMetfrom the genome afforded an E. coli strain in which the efficiency of non‐canonical initiation equals elongation. With this improved system we produced a protein containing two distinct ncAAs at the first and second positions, an initial step towards producing completely unnatural polypeptides in vivo. This work provides a valuable tool to synthetic biology and demonstrates remarkable versatility of the E. coli translational machinery for initiation with ncAAs in vivo.more » « less
-
Generating protein conjugates using the bioorthogonal ligation between tetrazines and trans-cyclooctene groups avoids the need to manipulate cysteine amino acids, and the ligation is rapid, site-specific, stoichiometric and allows for labeling of proteins in complex biological environments. Here, we provide a protocol for the expression of conjugation-ready proteins at high yields in Escherichia coli with greater than 95% encoding and labeling fidelity. This protocol focuses on installing the “Tet2” tetrazine amino acid using an optimized genetic code expansion (GCE) machinery system, Tet2 “pAJE-E7”, to direct Tet2 encoding at TAG stop codons in BL21 E. coli strains, enabling reproducible expression of Tet2-proteins that quantitatively react with trans-cyclooctene (TCO) groups within 5 minutes at room temperature and physiological pH. Use of the BL21 derivative B95(DE3) minimizes premature truncation byproducts caused by incomplete suppression of TAG stop codons and this makes it possible to use more diverse protein construct designs. Here, using a superfolder green fluorescent protein construct as an example protein, we describe in detail a four-day process for encoding Tet2 with yields of ~200 mg per liter culture. Additionally, a simple and fast diagnostic gel electrophoretic mobility shift assay to confirm Tet2-Et encoding, and reactivity is described. Finally, strategies to adapt the protocol to alternative proteins of interest and optimize expression yields and reactivity for that protein are discussed.more » « less
-
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS–tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.more » « less
-
Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNA Phe is increased during oxidative stress, while the cognate Phe-tRNA Phe aminoacylation activity is unchanged. In HPX − , Escherichia coli that lack reactive oxygen-scavenging enzymes and accumulate intracellular H 2 O 2 , we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic m -Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme’s housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress.more » « less
An official website of the United States government

