skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Potential Second Shutoff from AT2018fyk: An Updated Orbital Ephemeris of the Surviving Star under the Repeating Partial Tidal Disruption Event Paradigm
Abstract The tidal disruption event (TDE) AT2018fyk showed a rapid dimming event 500 days after discovery, followed by a rebrightening roughly 700 days later. It has been hypothesized that this behavior results from a repeating partial TDE (rpTDE), such that prompt dimmings/shutoffs are coincident with the return of the star to pericenter and rebrightenings generated by the renewed supply of tidally stripped debris. This model predicted that the emission should shut off again around August of 2023. We report AT2018fyk’s continued X-ray and UV monitoring, which shows an X-ray (UV) drop-in flux by a factor of 10 (5) over a span of two months, starting 2023 August 14. This sudden change can be interpreted as the second emission shutoff, which (1) strengthens the rpTDE scenario for AT2018fyk, (2) allows us to constrain the orbital period to a more precise value of 1306 ± 47 days, and (3) establishes that X-ray and UV/optical emission track the fallback rate onto this supermassive black hole—an often-made assumption that otherwise lacks observational verification—and therefore, the UV/optical lightcurve is powered predominantly by processes tied to X-rays. The second cutoff implies that another rebrightening should happen between 2025 May and August, and if the star survived the second encounter, a third shutoff is predicted to occur between 2027 January and July. Finally, low-level accretion from the less-bound debris tail (which is completely unbound/does not contribute to accretion in a nonrepeating TDE) can result in a faint X-ray plateau that could be detectable until the next rebrightening.  more » « less
Award ID(s):
2006684
PAR ID:
10533189
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
971
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L31
Size(s):
Article No. L31
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stars that interact with supermassive black holes (SMBHs) can be either completely or partially destroyed by tides. In a partial tidal disruption event (TDE), the high-density core of the star remains intact, and the low-density outer envelope of the star is stripped and feeds a luminous accretion episode. The TDE AT 2018fyk, with an inferred black hole mass of 107.7±0.4M, experienced an extreme dimming event at X-ray (factor of >6000) and UV (factor of ∼15) wavelengths ∼500–600 days after discovery. Here we report on the reemergence of these emission components roughly 1200 days after discovery. We find that the source properties are similar to those of the predimming accretion state, suggesting that the accretion flow was rejuvenated to a similar state. We propose that a repeated partial TDE, where the partially disrupted star is on an ∼1200 day orbit about the SMBH and periodically stripped of mass during each pericenter passage, powers its unique light curve. This scenario provides a plausible explanation for AT 2018fyk’s overall properties, including the rapid dimming event and the rebrightening at late times. We also provide testable predictions for the behavior of the accretion flow in the future; if the second encounter was also a partial disruption, then we predict another strong dimming event around day 1800 (2023 August) and a subsequent rebrightening around day 2400 (2025 March). This source provides strong evidence of the partial disruption of a star by an SMBH. 
    more » « less
  2. Abstract We present results from an extensive follow-up campaign of the tidal disruption event (TDE) ASASSN-15oi spanningδt ∼ 10–3000 days, offering an unprecedented window into the multiwavelength properties of a TDE during its first ≈8 yr of evolution. ASASSN-15oi is one of the few TDEs with strong detections at X-ray, optical/UV, and radio wavelengths and it also featured two delayed radio flares atδt ∼ 180 days andδt ∼ 1400 days. Our observations atδt > 1400 days reveal an absence of thermal X-rays, a late-time variability in the nonthermal X-ray emission, and sharp declines in the nonthermal X-ray and radio emission atδt ∼ 2800 days and ∼3000 days, respectively. The UV emission shows no significant evolution atδt > 400 days and remains above the pre-TDE level. We show that a cooling envelope model can explain the thermal emission consistently across all epochs. We also find that a scenario involving episodic ejection of material due to stream–stream collisions can possibly explain the first radio flare. Given the peculiar spectral and temporal evolution of the late-time emission, however, constraining the origins of the second radio flare and the nonthermal X-rays remains challenging. Our study underscores the critical role of long-term, multiwavelength follow-up to fully characterize the extended evolutionary phases of a TDE. 
    more » « less
  3. null (Ed.)
    ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models. 
    more » « less
  4. Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M<MBH< 106M). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis. 
    more » « less
  5. Abstract Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks1–5. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities6–8or interacting with a stellar object in a close orbit9–11. It has been suggested that this disk could be created when the SMBH disrupts a passing star8,11, implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs4,12and two observed TDEs have exhibited X-ray flares consistent with individual eruptions13,14. TDEs and QPEs also occur preferentially in similar galaxies15. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs. 
    more » « less