skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking live-cell single-molecule dynamics enables measurements of heterochromatin-associated protein–protein interactions
Abstract Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1–protein complexes in living cells.  more » « less
Award ID(s):
2316281
PAR ID:
10533268
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
52
Issue:
18
ISSN:
0305-1048
Format(s):
Medium: X Size: p. 10731-10746
Size(s):
p. 10731-10746
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. Although HP1 proteins are known to rapidly evolve, the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts heterochromatin formation, we performed a targeted mutagenesis screen of theS. pombeHP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produce Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position lead to the persistent gain or loss of epigenetic inheritance. These substitutions increase Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show how relatively minor changes in Swi6 amino acid composition in an auxiliary surface can lead to profound changes in epigenetic inheritance providing a redundant mechanism to evolve HP1-effector specificity. 
    more » « less
  2. Kaplan, C D (Ed.)
    Abstract Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein–protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites. 
    more » « less
  3. Imaging HP1 reveals rules for H3K9 methylation recognition and binding in living cells. 
    more » « less
  4. Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection. 
    more » « less
  5. Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3. 
    more » « less