Abstract The ion foreshock, filled with backstreaming foreshock ions, is very dynamic with many transient structures that disturb the bow shock and the magnetosphere‐ionosphere system. It has been shown that foreshock ions can be generated through either solar wind reflection at the bow shock or leakage from the magnetosheath. While solar wind reflection is widely believed to be the dominant generation process, our investigation using Time History of Events and Macroscale Interactions during Substorms mission observations reveals that the relative importance of magnetosheath leakage has been underestimated. We show from case studies that when the magnetosheath ions exhibit field‐aligned anisotropy, a large fraction of them attains sufficient field‐aligned speed to escape upstream, resulting in very high foreshock ion density. The observed foreshock ion density, velocity, phase space density, and distribution function shape are consistent with such an escape or leakage process. Our results suggest that magnetosheath leakage could be a significant contributor to the formation of the ion foreshock. Further characterization of the magnetosheath leakage process is a critical step toward building predictive models of the ion foreshock, a necessary step to better forecast foreshock‐driven space weather effects.
more »
« less
Magnetosheath Ion Field‐Aligned Asymmetry and Implications for Ion Leakage to the Foreshock
Abstract The ion foreshock is highly dynamic, disturbing the bow shock and the magnetosphere‐ionosphere system. To forecast foreshock‐driven space weather effects, it is necessary to model foreshock ions as a function of upstream shock parameters. Case studies in the accompanying paper show that magnetosheath ions sometimes exhibit strong field‐aligned asymmetry toward the upstream direction, which may be responsible for enhancing magnetosheath leakage and therefore foreshock ion density. To understand the conditions leading to such asymmetry and the potential for enhanced leakage, we perform case studies and a statistical study of magnetosheath and foreshock region data surrounding ∼500 Time History of Events and Macroscale Interactions during Substorms mission bow shock crossings. We quantify the asymmetry using the heat flux along the field‐aligned direction. We show that the strong field‐aligned heat flux persists across the entire magnetosheath from the magnetopause to the bow shock. Ion distribution functions reveal that the strong heat flux is caused by a secondary thermal population. We find that stronger asymmetry events exhibit heat flux preferentially toward the upstream direction near the bow shock and occur under larger IMF strength and larger solar wind dynamic pressure and/or energy flux. Additionally, we show that near the bow shock, magnetosheath leakage is a significant contributor to foreshock ions, and through enhancing the leakage the magnetosheath ion asymmetry can modulate the foreshock ion velocity and density. Our results imply that likely due to field line draping and compression against the magnetopause that leads to a directional mirror force, modeling the foreshock ions necessitates a more global accounting of downstream conditions.
more »
« less
- Award ID(s):
- 2420710
- PAR ID:
- 10533269
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 5
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are two types of transient phenomena characterized by flow deflected and hot cores bounded by one or two compressional boundaries in the foreshock. Using conjunction observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, we present an MHD HFA with a core filled with magnetosheath material around the bow shock and a typical kinetic FB associated with foreshock ions upstream of the bow shock, occurring simultaneously under the same solar wind/interplanetary magnetic field (IMF) conditions. The displacements of the bow shock moving back and forth along the sun-earth line are observed. Electron energy shows enhancements from ∼50 keV in the FB to ∼100 keV in the HFA core, suggesting additional acceleration process across the bow shock within the transient structure. The magnetosheath response of an HFA core-like structure with particle heating and electron acceleration is observed by the Magnetospheric Multiscale (MMS) mission. Ultralow frequency waves in the magnetosphere modulating cold ion energy are identified by THEMIS, driven by these transient structures. Our study improves our understanding of foreshock transients and suggests that single spacecraft observations are insufficient to reveal the whole picture of foreshock transients, leading to an underestimation of their impacts (e.g., particle acceleration energy and spatial scale of disturbances).more » « less
-
Abstract The ion foreshock is very dynamic, characterized by various transient structures that can perturb the bow shock and influence the magnetosphere‐ionosphere system. One important driver of foreshock transients is solar wind directional discontinuities (DDs) that demagnetize foreshock ions leading to a local current. If this current decreases the field strength at the DD, a hot flow anomaly (HFA) can form. Recent hybrid simulations found that when the current increases the field strength at the DD, a compressional structure forms with enhanced density and field strength opposite to HFAs. Using MMS and THEMIS observations, we confirm this situation. We demonstrate that the current geometry driven by the foreshock ions plays a critical role in the formation. The initial gyrophase of foreshock ions, due to their specular reflection, determines whether they can cross the DD. When many of the foreshock ions cannot cross the DD and the local current they drive increases the field strength at the DD, the enhanced field strength inhibits more foreshock ions from crossing the DD, further enhancing the local current. This feedback loop promotes the growth of the compressional structure. Such foreshock ion‐driven compressional structures can result in dynamic pressure enhancements in the magnetosheath, leading to magnetosheath jets. Our study enables prediction of the location and formation probability of such compressional structures and their potential geoeffectiveness.more » « less
-
Abstract When a solar wind discontinuity interacts with foreshock ions, foreshock transients such as hot flow anomalies and foreshock bubbles can form. These create significant dynamic pressure perturbations disturbing the bow shock, magnetopause, and magnetosphere‐ionosphere system. However, presently these phenomena are not predictable. In the accompanying paper, we derived analytical equations of foreshock ion partial gyration around a discontinuity and the resultant current density. In this study, we utilize the derived current density strength to model the energy conversion from the foreshock ions, which drives the outward motion or expansion of the solar wind plasma away from the discontinuity. We show that the model expansion speeds match those from local hybrid simulations for varying foreshock ion parameters. Using MMS, we conduct a statistical study showing that the model expansion speeds are moderately correlated with the magnetic field strength variations and the dynamic pressure decreases around discontinuities with correlation coefficients larger than 0.5. We use conjunctions between ARTEMIS and MMS to show that the model expansion speeds are typically large for those already‐formed foreshock transients. Our results show that our model can be reasonably successful in predicting significant dynamic pressure disturbances caused by foreshock ion‐discontinuity interactions. We discuss ways to improve the model in the future.more » « less
-
Abstract We use the three‐dimensional (3‐D) global hybrid code ANGIE3D to simulate the interaction of four solar wind tangential discontinuities (TDs) observed by ARTEMIS P1 from 0740 UT to 0800 UT on 28 December 2019 with the bow shock, magnetosheath, and magnetosphere. We demonstrate how the four discontinuities produce foreshock transients, a magnetosheath cavity‐like structure, and a brief magnetopause crossing observed by THEMIS and MMS spacecraft from 0800 UT to 0830 UT. THEMIS D observed entries into foreshock transients exhibiting low density, low magnetic field strength, and high temperature cores bounded by compressional regions with high densities and high magnetic field strengths. The MMS spacecraft observed cavities with strongly depressed magnetic field strengths and highly deflected velocity in the magnetosheath downstream from the foreshock. Dawnside THEMIS A magnetosheath observations indicate a brief magnetosphere entry exhibiting enhanced magnetic field strength, low density, and decreased and deflected velocity (sunward flow). The solar wind inputs into the 3‐D hybrid simulations resemble those seen by ARTEMIS. We simulate the interaction of four oblique TDs with properties similar to those in the observation. We place virtual spacecraft at the locations where observations were made. The hybrid simulations predict similar characteristics of the foreshock transients, a magnetosheath cavity, and a magnetopause crossing with characteristics similar to those observed by the multi‐spacecraft observations. The detailed and successful comparison of the interaction involving multiple TDs will be presented.more » « less
An official website of the United States government

