Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results.
more »
« less
Track You: A Deep Dive into Safety Alerts for Apple AirTags
Bluetooth-based item trackers have sparked apprehension over their potential misuse in harmful stalking and privacy violations. In response, manufacturers have implemented safety alerts to notify victims of extended tracking by unknown item trackers. In this study, we specifically investigate the anti-stalking mechanism of Apple's AirTag. We identify and analyze potential triggers of safety alerts that have not been examined in previous research, such as the local time, the victim's device model, AirTag's battery life, and the distance between the AirTag and the victim's device. Furthermore, we demonstrate a novel possibility of developing a stealthy cloned AirTag capable of tracking victims directly on the Find My app while circumventing safety alerts on the victim’s device. Our experiments demonstrate that, despite regular updates to the public key and MAC address, our cloned AirTag can provide real-time location updates even with a four months old key, thereby highlighting the challenges in designing a robust anti-stalking framework. Furthermore, we propose practical solutions to mitigate stalking risks from cloned AirTags and enhance the existing anti-stalking safeguards for AirTags. These suggestions seek to provide a foundation for similar Bluetooth-based item trackers to improve their anti-stalking protections while ensuring optimal tracking efficiency. We conducted rigorous experiments to validate our findings, ensuring their accuracy and reliability. Our evaluation highlights that safety alerts take over 8 hours to appear during the day and are more prompt during the night, particularly after 11 pm.
more »
« less
- Award ID(s):
- 1955227
- PAR ID:
- 10533293
- Publisher / Repository:
- Proceedings on Privacy Enhancing Technologies Symposium 2023
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2023
- Issue:
- 4
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 132 to 148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The purpose of alerts and warnings is to provide necessary information to the public that will lead to their safety in emergencies. The nation’s alerting capabilities need to evolve and progress with the extensive use of smartphones, and newer technologies become available, especially to be more precisely targeted to sub-populations at risk. Historically, this has been a challenge as the delivery of alerts and warning messages to the public is primarily through broadcast media and signs. However, deploying such signs takes time and may not be visible to people imminent of natural hazards. Especially for road closing, marking hazards, emergency evacuation, etc., it would be beneficial to have an easy-to-deploy and automated alert/warning system that requires no line of sight. To this end, we have developed Insight – a Bluetooth beacon-based system that uses a smartphone application to sense signals from beacons marking hazard zones. The system does not require any Internet or communication infrastructure and therefore, it is resilient to breakdowns in communications during disasters. To demonstrate the feasibility of Insight, we conducted a study in an urban university campus location. The system demonstrated adequate usability and feasibility.more » « less
-
Mobility tracking of IoT devices in smart city infrastructures such as smart buildings, hospitals, shopping centers, warehouses, smart streets, and outdoor spaces has many applications. Since Bluetooth Low Energy (BLE) is available in almost every IoT device in the market nowadays, a key to localizing and tracking IoT devices is to develop an accurate ranging technique for BLE-enabled IoT devices. This is, however, a challenging feat as billions of these devices are already in use, and for pragmatic reasons, we cannot propose to modify the IoT device (a BLE peripheral) itself. Furthermore, unlike WiFi ranging - where the channel state information (CSI) is readily available and the bandwidth can be increased by stitching 2.4GHz and 5GHz bands together to achieve a high-precision ranging, an unmodified BLE peripheral provides us with only the RSSI information over a very limited bandwidth. Accurately ranging a BLE device is therefore far more challenging than other wireless standards. In this paper, we exploit characteristics of BLE protocol (e.g. frequency hopping and empty control packet transmissions) and propose a technique to directly estimate the range of a BLE peripheral from a BLE access point by multipath profiling. We discuss the theoretical foundation and conduct experiments to show that the technique achieves a 2.44m absolute range estimation error on average.more » « less
-
Mobile devices continuously beacon Bluetooth Low Energy (BLE) advertisement packets. This has created the threat of attackers identifying and tracking a device by sniffing its BLE signals. To mitigate this threat, MAC address randomization has been deployed at the link-layer in most BLE transmitters. However, attackers can bypass MAC address randomization using lower-level physical-layer fingerprints resulting from manufacturing imperfections of radios. In this work, we demonstrate a practical and effective method of obfuscating physical-layer hardware imperfection fingerprints. Through theoretical analysis, simulations, and field evaluations, we design and evaluate our approach to hardware imperfection obfuscation. By analyzing data from thousands of BLE devices, we demonstrate obfuscation significantly reduces the accuracy of identifying a target device. This makes an attack impractical, even if a target is continuously observed for 24 hours. Furthermore, we demonstrate the practicality of this defense by implementing it by making firmware changes to commodity BLE chipsets.more » « less
-
One of the biggest challenges that Universities face today is the safety of its people on campus from crimes like mugging, battery and even shooting in or around the campus area. Using SJSU campus as an example, over 50 alert cases of burglaries, thefts, batteries, sexual assaults and other incidents have been reported in and around the SJSU campus over the last year. We have Bluelight emergency telephones placed all over the campus, in all buildings, elevators and on the campus grounds. These phones can be used to report emergency situations, suspicious activities, request escorts etc. However, there is a huge delay between the occurrence of incidents and the arrival of the policeman at the site. There is a critical need for a system that would allow the authorities to locate victims and respond faster to these incidents. To reduce the delay in reporting incidents and their occurrence time, we have developed a mobile application that will let users send alerts along with their real-time location to the UPD directly from their mobile phones. However, finding the position of a victim in a building is the most important challenge we are facing. Many existing systems do not work in indoor environment, and the state-of-the-art localization systems are either inconvenience to use or inaccurate enough to pin-point user's locations inside the building. In this paper, we propose a fine-grained location-aware smart campus security systems that leverages hybrid localization approaches with minimum deployment cost. Specifically, we effectively combines the Wi-Fi fingerprinting localization approach with the Bluetooth beacon based trilateration approach, and improves the location accuracy to the meter-level with low cost.more » « less
An official website of the United States government

