skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zirconocene‐Mediated Radical Hydrophosphination
Abstract Hydrophosphination activity has been solicited from the parent and decamethyl zirconocene dichloride compounds, Cp2ZrCl2and Cp*2ZrCl2. Given recent reports of photocatalytic hydrophosphination, these compounds were irradiated in the near ultraviolet (UV) as precatalysts resulting in the successful hydrophosphination of styrene substrates and activated alkenes. Irradiation appears to induce homolysis of the Cp or Cp* ligand, resulting in radical hydrophosphination. Successful detection of this radical reactivity was achieved by monitoring for EPR signals within situirradiation, a methodology proving to be general for the determination of radical versus closed‐shell reactivity in transition‐metal photocatalysis.  more » « less
Award ID(s):
2101766 1919417
PAR ID:
10533305
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
26
Issue:
27
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrophosphination using calcium compounds as catalysts under irradiation is described as a foray into s‐block photocatalysis. Transition‐metal compounds have been highly successful hydrophosphination catalysts under photochemical conditions, utilizing substrates previously considered inaccessible. A calcium hydrophosphination precatalyst, Ca(nacnac) (THF) (N(SiMe3)2) (1, nacnac = HC[(C(Me)N‐2,6‐iPr2C6H3)]2), reported by Barrett and Hill, as well as the presumed intermediate, Ca(nacnac) (THF) (PPh2) (2), and the Schlenk equilibrium product, Ca[N(SiMe3)2]2(THF)2(3) were screened under photochemical conditions with a range of unsaturated substrates including styrenic alkenes, Michael acceptors, and dienes with modest to excellent conversions, though unactivated alkenes were inaccessible. All compounds exhibit enhanced catalysis under irradiation by light emitting diode (LED)‐generated blue light. Nacnac‐supported compounds generate radicals as evidenced by Electron Paramagnetic Resonance (EPR) spectroscopy and radical trapping reactions, whereas unsupported calcium compounds are EPR silent and appear to undergo hydrophosphination akin to thermal reactions with these compounds. These results buttress the notion that photoactivation of π‐basic ligands is a broad phenomenon, extending beyond the d‐block, but like d‐block metals, consideration of ancillary ligands is essential to avoid radical reactivity. 
    more » « less
  2. Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism. 
    more » « less
  3. Abstract Phototherapy approaches include photodynamic therapy (PDT), which utilizes chemically stable photocatalysts to sensitize the conversion of endogenous molecules such as oxygen (O2) to form transient reactive species such as1O2, and photopharmacology, a complementary approach that relies on molecules that undergo self‐modifying photochemistry, such as bond cleavage reactions or isomerization, for the creation of biologically active products. While Ru(II) polypyridyl systems have demonstrated utility for both approaches, related organometallic systems are relatively less explored. Here, the photochemistry and photobiological responses were compared for five Ru(II) arene compounds containing photolabile monodentate azine ligands and the π‐expansive bidentate ligands dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz), 4,5,9,16‐tetraaza‐dibenzo[a,c]naphthacene (dppn), and α‐terthienyl‐appended imidazo[4,5‐f][1,10]phenanthroline (IP‐3T). The compounds demonstrated significant light‐mediated photocytotoxicity in lung cancer and melanoma cell lines, with up to 6000‐fold increases in cytotoxicity upon irradiation. The arene systems were capable of partitioning between different excited state relaxation pathways, both releasing the monodentate ligand and generating1O2, but with notably low yields that did not correlate with the photocytotoxicity of the systems. The organometallic compounds exhibit less mixing of the metal‐associated and ligand‐centered excited states than analogous polypyridyl coordination compounds, providing a structurally, photochemically, and photobiologically distinct class of compounds that can support both metal‐ and ligand‐centered reactivity. 
    more » « less
  4. A comparative study of amino phenoxide zirconium catalysts in the hydrophosphination of alkenes with diphenylphosphine reveals enhanced activity upon irradiation during catalysis, with conversions up to 10-fold greater than reactions in ambient light. The origin of improved reactivity is hypothesized to result from substrate insertion upon an n→d charge transfer of a Zr–P bond in the excited state of putative phosphido (Zr–PR2) intermediates. TD-DFT analysis reveals the lowest lying excited state in the proposed active catalysts are dominated by a P 3p→Zr 4d MLCT, presumably leading to enhanced catalysis. This hypothesis follows from triamidoamine-supported zirconium catalysts but demonstrates the generality of photocatalytic hydrophosphination with d0 metals. 
    more » « less
  5. Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP. 
    more » « less