skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-Expression of type 1 fimbriae and flagella in Escherichia coli : consequences for adhesion at interfaces
Escherichia coli expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several E. coli strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of E. coli MG1655 affects their adhesion at liquid–solid and liquid–liquid interfaces. We tune fimbrial and flagellar expression on the cell surface through plasmid-based inducible expression of the fim operon and fliC-flhDC genes. We show that increased fimbrial expression increases interfacial adhesion as well as bacteria-driven actuation of micron-sized objects. Co-expression of flagella in fimbriated bacteria, however, does not greatly affect either of these properties. Together, these results suggest that interfacial adhesion as well as motion actuated by adherent bacteria can be altered by controlling the expression of surface appendages.  more » « less
Award ID(s):
2104796
PAR ID:
10533306
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McCartney, J.S.; Tomac, I. (Ed.)
    Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods. 
    more » « less
  2. To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size–speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed ofEscherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size–speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria. 
    more » « less
  3. Abstract Flagellar filaments function as the propellers of the bacterial flagellum and their supercoiling is key to motility. The outer domains on the surface of the filament are non-critical for motility in many bacteria and their structures and functions are not conserved. Here, we show the atomic cryo-electron microscopy structures for flagellar filaments from enterohemorrhagic Escherichia coli O157:H7, enteropathogenic E. coli O127:H6, Achromobacter , and Sinorhizobium meliloti , where the outer domains dimerize or tetramerize to form either a sheath or a screw-like surface. These dimers are formed by 180° rotations of half of the outer domains. The outer domain sheath (ODS) plays a role in bacterial motility by stabilizing an intermediate waveform and prolonging the tumbling of E. coli cells. Bacteria with these ODS and screw-like flagellar filaments are commonly found in soil and human intestinal environments of relatively high viscosity suggesting a role for the dimerization in these environments. 
    more » « less
  4. Salama, Nina R (Ed.)
    ABSTRACT Flagella are complex, trans-envelope nanomachines that localize in species-specific patterns on the cell surface. Here, we study the localization dynamics of the earliest stage of basal body formation inBacillus subtilisusing a fluorescent fusion to the C-ring protein FliM. We find thatB. subtilisbasal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan (PG). However, rare mobile basal bodies were observed, and the prevalence of mobile basal bodies is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning, and we propose that rod polymerization probes the PG superstructure for pores of sufficient diameter to permit rod transit. Furthermore, mutation of the rod disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that rod synthesis and the cytoplasmic regulators coordinate flagellar assembly by interpreting a grid-like pattern of pores, pre-existent in the PG. IMPORTANCEBacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site.Bacillus subtilisassembles ~25 basal bodies over the length of the cell in a grid-like pattern and lacks proteins required for their polar targeting. Here, we show thatB. subtilisbasal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan (PG) wall. Moreover, defects in the flagellar rod lead to a more-random distribution of flagella and an increase in polar basal bodies. We conclude that the peritrichous patterning of flagella ofB. subtilisis different from the polar patterning of other bacteria, and we infer that theB. subtilisrod probes the PG for holes that can accommodate the machine. 
    more » « less
  5. Cellular motility is a key function guiding microbial adhesion to interfaces, which is the first step in the formation of biofilms. The close association of biofilms and bioremediation has prompted extensive research aimed at comprehending the physics of microbial locomotion near interfaces. We study the dynamics and statistics of microorganisms in a ‘floating biofilm’, i.e. , a confinement with an air–liquid interface on one side and a liquid–liquid interface on the other. We use a very general mathematical model, based on a multipole representation and probabilistic simulations, to ascertain the spatial distribution of microorganisms in films of different viscosities. Our results reveal that microorganisms can be distributed symmetrically or asymmetrically across the height of the film, depending on their morphology and the ratio of the film's viscosity to that of the fluid substrate. Long-flagellated, elongated bacteria exhibit stable swimming parallel to the liquid–liquid interface when the bacterial film is less viscous than the underlying fluid. Bacteria with shorter flagella on the other hand, swim away from the liquid–liquid interface and accumulate at the free surface. We also analyze microorganism dynamics in a flowing film and show how a microorganism's ability to resist ‘flow-induced-erosion’ from interfaces is affected by its elongation and mode of propulsion. Our study generalizes past efforts on understanding microorganism dynamics under confinement by interfaces and provides key insights on biofilm initiation at liquid–liquid interfaces. 
    more » « less