One essential goal of constructing coarse-grained molecular dynamics (CGMD) models is to accurately predict nonequilibrium processes beyond the atomistic scale. While a CG model can be constructed by projecting the full dynamics onto a set of resolved variables, the dynamics of the CG variables can recover the full dynamics only when the conditional distribution of the unresolved variables is close to the one associated with the particular projection operator. In particular, the model's applicability to various nonequilibrium processes is generally unwarranted due to the inconsistency in the conditional distribution. Here, we present a data-driven approach for constructing CGMD models that retain certain generalization ability for nonequilibrium processes. Unlike the conventional CG models based on preselected CG variables (e.g., the center of mass), the present CG model seeks a set of auxiliary CG variables similar to the time-lagged independent component analysis to maximize the velocity correlation. This effectively minimizes the entropy contribution of unresolved variables and ensures the distribution under a broad range of nonequilibrium conditions approaches the one under equilibrium. Numerical results of a polymer melt system demonstrate the significance of this broadly overlooked metric for the model's generalization ability, and the effectiveness of the present CG model for predicting the complex viscoelastic responses under various nonequilibrium flows.
more »
« less
Δ-Learning applied to coarse-grained homogeneous liquids
Coarse-grained molecular dynamics (CGMD) simulations address lengthscales and timescales that are critical to many chemical and material applications. Nevertheless, contemporary CGMD modeling is relatively bespoke and there are no black-box CGMD methodologies available that could play a comparable role in discovery applications that density functional theory plays for electronic structure. This gap might be filled by machine learning (ML)-based CGMD potentials that simplify model development, but these methods are still in their early stages and have yet to demonstrate a significant advantage over existing physics-based CGMD methods. Here, we explore the potential of Δ-learning models to leverage the advantages of these two approaches. This is implemented by using ML-based potentials to learn the difference between the target CGMD variable and the predictions of physics-based potentials. The Δ-models are benchmarked against the baseline models in reproducing on-target and off-target atomistic properties as a function of CG resolution, mapping operator, and system topology. The Δ-models outperform the reference ML-only CGMD models in nearly all scenarios. In several cases, the ML-only models manage to minimize training errors while still producing qualitatively incorrect dynamics, which is corrected by the Δ-models. Given their negligible added cost, Δ-models provide essentially free gains over their ML-only counterparts. Nevertheless, an unexpected finding is that neither the Δ-learning models nor the ML-only models significantly outperform the elementary pairwise models in reproducing atomistic properties. This fundamental failure is attributed to the relatively large irreducible force errors associated with coarse-graining that produces little benefit from using more complex potentials.
more »
« less
- Award ID(s):
- 2045887
- PAR ID:
- 10533316
- Publisher / Repository:
- Journal of Chemical Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 159
- Issue:
- 5
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a machine-learning-based coarse-grained molecular dynamics (CGMD) model that faithfully retains the many-body nature of the inter-molecular dissipative interactions. Unlike the common empirical CG models, the present model is constructed based on the Mori-Zwanzig formalism and naturally inherits the heterogeneous state-dependent memory term rather than matching the mean-field metrics such as the velocity auto-correlation function. Numerical results show that preserving the many-body nature of the memory term is crucial for predicting the collective transport and diffusion processes, where empirical forms generally show limitations.more » « less
-
Abstract The resolution of climate models is limited by computational cost. Therefore, we must rely on parameterizations to represent processes occurring below the scale resolved by the models. Here, we focus on parameterizations of ocean mesoscale eddies and employ machine learning (ML), namely, relevance vector machines (RVMs) and convolutional neural networks (CNNs), to derive computationally efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we demonstrate the usefulness of the RVM algorithm to reveal closed‐form equations for eddy parameterizations with embedded conservation laws. When implemented in an idealized ocean model, all parameterizations improve the statistics of the coarse‐resolution simulation. The CNN is more stable than the RVM such that its skill in reproducing the high‐resolution simulation is higher than the other schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics‐aware interpretable ML turbulence parameterizations for use in ocean climate models.more » « less
-
Physics-based, atom-centered machine learning (ML) representations have been instrumental to the effective integration of ML within the atomistic simulation community. Many of these representations build off the idea of atoms as having spherical, or isotropic, interactions. In many communities, there is often a need to represent groups of atoms, either to increase the computational efficiency of simulation via coarse-graining or to understand molecular influences on system behavior. In such cases, atom-centered representations will have limited utility, as groups of atoms may not be well-approximated as spheres. In this work, we extend the popular Smooth Overlap of Atomic Positions (SOAP) ML representation for systems consisting of non-spherical anisotropic particles or clusters of atoms. We show the power of this anisotropic extension of SOAP, which we deem AniSOAP, in accurately characterizing liquid crystal systems and predicting the energetics of Gay–Berne ellipsoids and coarse-grained benzene crystals. With our study of these prototypical anisotropic systems, we derive fundamental insights on how molecular shape influences mesoscale behavior and explain how to reincorporate important atom–atom interactions typically not captured by coarse-grained models. Moving forward, we propose AniSOAP as a flexible, unified framework for coarse-graining in complex, multiscale simulation.more » « less
-
Coarse-grained models describe the macroscopic mean response of a process at large scales, which derives from stochastic processes at small scales. Common examples include accounting for velocity fluctuations in a turbulent fluid flow model and cloud evolution in climate models. Most existing techniques for constructing coarse-grained models feature ill-defined parameters whose values are arbitrarily chosen (e.g., a window size), are narrow in their applicability (e.g., only applicable to time series or spatial data), or cannot readily incorporate physics information. Here, we introduce the concept of physics-guided Gaussian process regression as a machine-learning-based coarse-graining technique that is broadly applicable and amenable to input from known physics-based relationships. Using a pair of case studies derived from molecular dynamics simulations, we demonstrate the attractive properties and superior performance of physics-guided Gaussian processes for coarse-graining relative to prevalent benchmarks. The key advantage of Gaussian-process-based coarse-graining is its ability to seamlessly integrate data-driven and physics-based information.more » « less
An official website of the United States government

