Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics.
more »
« less
Rapid stress relaxation of high‐ T g conjugated polymeric thin films
Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics.
more »
« less
- Award ID(s):
- 2047689
- PAR ID:
- 10533317
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 62
- Issue:
- 16
- ISSN:
- 2642-4150
- Format(s):
- Medium: X Size: p. 3839-3847
- Size(s):
- p. 3839-3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Semiconducting donor–acceptor (D–A) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)‐based D–A polymers with varied alkyl side‐chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (Tg) with increasing side‐chain length, which is further verified through coarse‐grained molecular dynamics simulations. Informed from experimental results, a mass‐per‐flexible bond model is developed to capture such observation through a linear correlation betweenTgand polymer chain flexibility. Using this model, a wide range of backboneTgover 80 °C and elastic modulus over 400 MPa can be predicted for PDPP‐based polymers. This study highlights the important role of side‐chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predictTgand elastic modulus of future new D–A polymers.more » « less
-
The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.more » « less
-
Solution processing techniques are often used to enhance intra and interchain order in semiconducting conjugated polymer thin films used in the active layer of organic optoelectronic devices. We investigate the nanomechanical properties of conjugated polymer thin films arising from solution processing techniques. We find that Young’s Modulus data measured by AM-FM AFM can detect additional changes in film properties not discernible by other commonly used bulk thin-film characterization techniques. For PBDB-T-SF, we detect an increase in molecular order that is not noticable by UV–visible absorption spectroscopy, X-ray diffraction or nanoindentation. PCDTBT, the most amorphous of the polymers studied, shows no changes in absorption or X-ray diffraction data, yet clear changes in Young’s Modulus were detected by AFM. Our study demonstrates the applicability of nanomechanical measurements for characterizing local structural variations in conjugated polymer films. This work is relevant to ongoing efforts to control and understand the complex structure-property-processing relationships of conjugated polymer thin films.more » « less
-
Abstract Straining the vanadium dimers along the rutilec‐axis can be used to tune the metal‐to‐insulator transition (MIT) of VO2but has thus far been limited to TiO2substrates. In this work VO2/MgF2epitaxial films are grown via molecular beam epitaxy (MBE) to strain engineer the transition temperature (TMIT). First, growth parameters are optimized by varying the synthesis temperature of the MgF2(001) substrate (TS) using a combination of X‐ray diffraction techniques, temperature dependent transport, and soft X‐ray photoelectron spectroscopy. It is determined thatTSvalues greater than 350 °C induce Mg and F interdiffusion and ultimately the relaxation of the VO2layer. Using the optimized growth temperature, VO2/MgF2(101) and (110) films are then synthesized. The three film orientations display MITs with transition temperatures in the range of 15–60 °C through precise strain engineering.more » « less