We study the distortion of one-sided and two-sided matching problems on the line. In the one-sided case, n agents need to be matched to n items, and each agent's cost in a matching is their distance from the item they were matched to. We propose an algorithm that is provided only with ordinal information regarding the agents' preferences (each agent's ranking of the items from most- to least-preferred) and returns a matching aiming to minimize the social cost with respect to the agents' true (cardinal) costs. We prove that our algorithm simultaneously achieves the best-possible approximation of 3 (known as distortion) with respect to a variety of social cost measures which include the utilitarian and egalitarian social cost. In the two-sided case, where the agents need be matched to n other agents and both sides report their ordinal preferences over each other, we show that it is always possible to compute an optimal matching. In fact, we show that this optimal matching can be achieved using even less information, and we provide bounds regarding the sufficient number of queries.
more »
« less
Strategic Aspects of Stable Matching Markets: A Survey
Matching markets consist of two disjoint sets of agents, where each agent has a preference list over agents on the other side. The primary objective is to find a stable matching between the agents such that no unmatched pair of agents prefer each other to their matched partners. The incompatibility between stability and strategy-proofness in this domain gives rise to a variety of strategic behavior of agents, which in turn may influence the resulting matching. In this paper, we discuss fundamental properties of stable matchings, review essential structural observations, survey key results in manipulation algorithms and their game-theoretical aspects, and more importantly, highlight a series of open research questions.
more »
« less
- Award ID(s):
- 2144413
- PAR ID:
- 10533710
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- ISBN:
- 978-1-956792-04-1
- Page Range / eLocation ID:
- 8077 to 8085
- Format(s):
- Medium: X
- Location:
- Jeju, South Korea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs complete preference lists. In practice, preference lists are short, yet stable matching still works well. This raises two questions: Why does it work well? Which proposals should agents include in their preference lists? We study these questions in a model, introduced by Lee, with preferences based on correlated cardinal utilities: these utilities are based on common public ratings of each agent together with individual private adjustments. Lee showed that for suitable utility functions, in large markets, with high probability, for most agents, all stable matchings yield similar valued utilities. By means of a new analysis, we strengthen Lee's result, showing that in large markets, with high probability, for all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities. We can then deduce that for all but the agents with the lowest public ratings, each agent has an easily identified length O(log n) preference list that includes all of its stable matches, addressing the second question above. We note that this identification uses an initial communication phase. We extend these results to settings where the two sides have unequal numbers of agents, to many-to-one settings, e.g. employers and workers, and we also show the existence of an epsilon-Bayes-Nash equilibrium in which every agent makes relatively few proposals. These results all rely on a new technique for sidestepping the conditioning between the tentative matching events that occur over the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results with an experimental study.more » « less
-
We initiate the study of matching roommates and rooms wherein the preferences of agents over other agents and rooms are complementary and represented by Leontief utilities. In this setting, 2n agents must be paired up and assigned to n rooms. Each agent has cardinal valuations over the rooms as well as compatibility values over all other agents. Under Leontief preferences, an agent’s utility for a matching is the minimum of the two values. We focus on the tradeoff between maximizing utilitarian social welfare and strategyproofness. Our main result shows that—in a stark contrast to the additive case— under binary Leontief utilities, there exist strategyproof mechanisms that maximize the social welfare. We further devise a strategyproof mechanism that implements such a welfare maximizing algorithm and is parameterized by the number of agents. Along the way, we highlight several possibility and impossibility results, and give upper bounds and lower bounds for welfare with or without strategyproofness.more » « less
-
While the stable marriage problem and its variants model a vast range of matching markets, they fail to capture complex agent relationships, such as the affiliation of applicants and employers in an interview marketplace. To model this problem, the existing literature on matching with externalities permits agents to provide complete and total rankings over matchings based off of both their own and their affiliates' matches. This complete ordering restriction is unrealistic, and further the model may have an empty core. To address this, we introduce the Dichotomous Affiliate Stable Matching (DASM) Problem, where agents' preferences indicate dichotomous acceptance or rejection of another agent in the marketplace, both for themselves and their affiliates. We also assume the agent's preferences over entire matchings are determined by a general weighted valuation function of their (and their affiliates') matches. Our results are threefold: (1) we use a human study to show that real-world matching rankings follow our assumed valuation function; (2) we prove that there always exists a stable solution by providing an efficient, easily-implementable algorithm that finds such a solution; and (3) we experimentally validate the efficiency of our algorithm versus a linear-programming-based approach.more » « less
-
We study the problem of online learning in competitive settings in the context of two-sided matching markets. In particular, one side of the market, the agents, must learn about their preferences over the other side, the firms, through repeated interaction while competing with other agents for successful matches. We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match in structured matching markets. In contrast to prior works, the proposed algorithms make decisions based solely on an agent’s own history of play and requires no foreknowledge of the firms’ preferences.Our algorithms are constructed by splitting up the statistical problem of learning one’s preferences, from noisy observations, from the problem of competing for firms. We show that under realistic structural assumptions on the underlying preferences of the agents and firms, the proposed algorithms incur a regret which grows at most logarithmically in the time horizon. However, we note that in the worst case, it may grow exponentially in the size of the market.more » « less
An official website of the United States government

