skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: The star-forming and ionizing properties of dwarf z ~ 6–9 galaxies in JADES: insights on bursty star formation and ionized bubble growth
ABSTRACT

Reionization is thought to be driven by faint star-forming galaxies, but characterizing this population has long remained very challenging. Here, we utilize deep nine-band JADES (JWST Advanced Deep Extragalactic Survey)/NIRCam (Near-Infrared Camera) imaging to study the star-forming and ionizing properties of 756 $z\sim 6-9$ galaxies, including hundreds of very ultraviolet (UV)-faint objects ($M_\mathrm{UV}\gt -18$). The faintest ($m\sim 30$) galaxies in our sample typically have stellar masses of $M_\ast \sim (1-3)\times 10^7\ \mathrm{ M}_\odot$ and young light-weighted ages ($\sim$50 Myr), though some show strong Balmer breaks implying much older ages ($\sim$500 Myr). We find no evidence for extremely massive galaxies ($\gt 3\times 10^{10}\ \mathrm{ M}_\odot$) in our sample. We infer a strong (factor $\gt $2) decline in the typical [O iii]$+$H $\beta$ equivalent widths (EWs) towards very faint $z\sim 6-9$ galaxies, yet a weak UV luminosity dependence on the H $\alpha$ EWs at $z\sim 6$. We demonstrate that these EW trends can be explained if fainter galaxies have systematically lower metallicities as well as more recently declining star formation histories relative to the most UV-luminous galaxies. Our data provide evidence that the brightest galaxies are frequently experiencing a recent strong upturn in star formation rate. We also discuss how the EW trends may be influenced by a strong correlation between $M_\mathrm{UV}$ and Lyman continuum escape fraction. This alternative explanation has dramatically different implications for the contribution of galaxies along the luminosity function to cosmic reionization. Finally, we quantify the photometric overdensities around two $z\,\gt\,7$ strong Ly $\alpha$ emitters. One Ly $\alpha$ emitter lies close to a strong photometric overdensity, while the other shows no significant nearby overdensity, perhaps implying that not all strong $z\,\gt\, 7$ Ly $\alpha$ emitters reside in large ionized bubbles.

 
more » « less
PAR ID:
10533841
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
533
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1111-1142
Size(s):
p. 1111-1142
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Reionization-era galaxies tend to exhibit weak Ly α emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly α emission now known in four of the most massive z = 7–9 galaxies in the CANDELS fields, all of which also exhibit intense [O iii]+H β emission (EW > 800 Å). To better understand why Ly α is anomalously strong in a subset of massive z ≃ 7–9 galaxies, we have initiated an MMT/Binospec survey targeting a larger sample (N = 22) of similarly luminous (≃1–6 L$^{\ast }_{\mathrm{UV}}$) z ≃ 7 galaxies selected over very wide-area fields (∼3 deg2). We confidently (>7σ) detect Ly α in 78 per cent (7/9) of galaxies with strong [O iii]+H β emission (EW > 800 Å) as opposed to only 8 per cent (1/12) of galaxies with more moderate (EW = 200–800 Å) [O iii]+H β. We argue that the higher Ly α EWs of the strong [O iii]+H β population likely reflect enhanced ionizing photon production efficiency owing to their large sSFRs (≳30 Gyr−1). We also find evidence that Ly α transmission from massive galaxies declines less rapidly over 6 < z < 7 than in low-mass lensed systems. In particular, our data suggest no strong evolution in Ly α transmission, consistent with a picture wherein massive z ≃ 7 galaxies often reside in large ionized regions. We detect three closely separated (R = 1.7 physical Mpc) z ≃ 7 Ly α emitters in our sample, conceivably tracing a large ionized structure that is consistent with this picture. We detect tentative evidence for an overdensity in this region, implying a large ionizing photon budget in the surrounding volume. 
    more » « less
  2. ABSTRACT

    We describe JWST/NIRSpec prism measurements of Ly α emission in z ≳ 5 galaxies. We identify Ly α detections in 10 out of 69 galaxies with robust rest-optical emission-line redshift measurements at 5 ≤ z < 7 in the Cosmic Evolution Early Release Science (CEERS) and DDT-2750 observations of the Extended Groth Strip field. Galaxies at z ≃ 6 with faint continuum (F150W=27–29 mag) are found with extremely large rest-frame Ly α equivalent widths (EWs; ranging up to 286 Å). Likely Ly α detections are also seen in two new z > 7 galaxies (z = 7.49 and 7.17) from the second epoch of CEERS observations, both showing large Ly α EWs that likely indicate significant transmission through the intergalactic medium (IGM). We measure high Ly α escape fractions in the 12 Ly α emitters in our sample (median 0.28), two of which show $f_{\rm esc}^{ {\rm Ly}\alpha }$ near unity (>0.80). We find that $50_{-11}^{+11}$ per cent of z ≃ 6 galaxies with [O iii] + H β EW>1000 Å have $f_{\rm esc}^{ {\rm Ly}\alpha }$ >0.2, consistent with the fractions found in lower redshift samples with matched [O iii] + H β EWs. While uncertainties are still significant, we find that only $10_{-5}^{+9}$ per cent of z > 7 galaxies with similarly strong rest optical emission lines show such large $f_{\rm esc}^{ {\rm Ly}\alpha }$, as may be expected if IGM attenuation of Ly α increases towards higher redshifts. We identify photometric galaxy overdensities near the z ≳ 7 Ly α emitters, potentially providing the ionizing flux necessary to create large ionized sightlines that facilitate Ly α transmission. Finally, we investigate the absence of Ly α emission in a comparable (and spectroscopically confirmed) galaxy overdensity at z = 7.88 in the Abell 2744 field, discussing new prism spectra of the field obtained with the UNCOVER program.

     
    more » « less
  3. ABSTRACT

    Given the sensitivity of the resonant Lyman $\alpha$ (Ly $\alpha $) transition to absorption by neutral hydrogen, observations of Ly $\alpha$ emitting galaxies (LAEs) have been widely used to probe the ionizing capabilities of reionization-era galaxies and their impact on the intergalactic medium (IGM). However, prior to JWST our understanding of the contribution of fainter sources and of ionized ‘bubbles’ at earlier stages of reionization remained uncertain. Here, we present the characterization of three exceptionally distant LAEs at $z \gt 8$, newly discovered by JWST/Near-Infrared Spectrograph in the JADES survey. These three similarly bright ($M_\text{UV} \approx -20 \, \mathrm{mag}$) LAEs exhibit small Ly $\alpha$ velocity offsets from the systemic redshift, $\Delta v_\rm{{Ly\alpha }} \lesssim 200 \, \mathrm{km \, s^{-1}}$, yet span a range of Ly $\alpha$ equivalent widths (15, 31, and $132 \, \mathring{\rm A}$). The former two show moderate Ly $\alpha$ escape fractions ($f_\rm{esc, {Ly\alpha }} \approx 10~{{\rm per\,cent}}$), whereas Ly $\alpha$ escapes remarkably efficiently from the third ($f_\rm{esc, {Ly\alpha }} \approx 72~{{\rm per\,cent}}$), which moreover is very compact (half-light radius of $90 \pm 10 \, \mathrm{pc}$). We find these LAEs are low-mass galaxies dominated by very recent, vigorous bursts of star formation accompanied by strong nebular emission from metal-poor gas. We infer the two LAEs with modest $f_\rm{esc, {Ly\alpha }}$, one of which reveals evidence for ionization by an active galactic nucleus, may have reasonably produced small ionized bubbles preventing complete IGM absorption of Ly $\alpha$. The third, however, requires a $\sim \!3 \, \text{physical Mpc}$ bubble, indicating faint galaxies have contributed significantly. The most distant LAEs thus continue to be powerful observational probes into the earlier stages of reionization.

     
    more » « less
  4. ABSTRACT

    We investigate the detectability of Lyman-$\alpha$ (Ly $\alpha$) emission from galaxies at the onset of cosmic reionization, aiming to understand the conditions necessary for detecting high-redshift sources like JADES-GS-z13-1-LA at $z=13$. By integrating galaxy formation models with detailed intergalactic medium (IGM) reionization simulations, we construct high-redshift galaxy catalogues to model intrinsic Ly $\alpha$ profiles and assess their transmission through the IGM. For a galaxy with $M_{\rm UV}\sim -18.5$ like JADES-GS-z13-1-LA, our fiducial model predicts a Ly $\alpha$ transmission of ${\sim }13$ per cent and there is a probability of observing Ly $\alpha$ emission with an equivalent width $\gt 40$ Å of up to 10 per cent. We also explore how variations in the UV ionizing escape fraction, dependent on host halo mass or specific star formation rate, impact Ly $\alpha$ detectability. Our findings reveal that reionization morphology significantly influences detection chances – models where reionization is driven by low-mass galaxies can boost the detection probability to as much as 12 per cent, while those driven by massive galaxies tend to reduce ionized regions around faint emitters, limiting their detectability. Our findings remain robust when further accounting for stochastic star formation with the detection probability still spanning 3 per cent to 12 per cent. This study underscores the interplay between reionization morphology and intrinsic galaxy properties in interpreting high-redshift Ly $\alpha$ observations.

     
    more » « less
  5. ABSTRACT

    Extreme emission line galaxies (EELGs) exhibit large equivalent widths (EW) in their rest-optical emission lines ([O iii]$\lambda 5007$ or H $\alpha$ rest-frame EW$\gt 750$ Å) which can be tied to a recent upturn in star formation rate (SFR), due to the sensitivity of the nebular line emission and the rest-optical continuum to young ($\lt 10$ Myr) and evolved stellar populations, respectively. By studying a sample of 85 star-forming galaxies (SFGs), spanning the redshift and magnitude interval $3 \lt z\lt 9.5$ and $-16\gt $M$\rm _{UV}\gt -21$, in the JWST Advanced Deep Extragalactic Survey (JADES) with NIRSpec/prism spectroscopy, we determine that SFGs initiate an EELG phase when entering a significant burst of star formation, with the highest EWs observed in EELGs with the youngest luminosity-weighted ages ($\lt 5$ Myr) and the highest burst intensity (those with the greatest excess between their current and long-term average SFR). We spectroscopically confirm that a greater proportion of SFGs are in an EELG phase at high redshift in our UV-selected sample ($61\pm 4~{{\ \rm per\ cent}}$ in our $z\gt 5.7$ high-redshift bin, compared to $23^{+4}_{-1}\%$ in our lowest redshift bin $3\lt z\lt 4.1$) due to the combined evolution of metallicity, ionization parameter, and star formation histories with redshift. We report that the EELGs within our sample exhibit a higher average ionization efficiency ($\log _{10}(\xi _\mathrm{ion}^\mathrm{HII}/{\rm erg^{-1}Hz}) =25.5\pm 0.2$) than the non-EELGs. High-redshift EELGs therefore comprise a population of efficient ionizing photon producers. Additionally, we report that 53 per cent (9/17) of EELGs at $z\gt 5.7$ have observed Ly $\alpha$ emission, potentially lying within large ionized regions. The high detection rate of Ly $\alpha$ emitters in our EELG selection suggests that the physical conditions associated with entering an EELG phase also promote the escape of Ly $\alpha$ photons.

     
    more » « less