As deep learning models grow in size to achieve state-of-the-art accuracy, there is a pressing need for compact models. To address this challenge, we introduce a novel operation called Personal Self-Attention (PSA). It is specifically designed to learn non-linear 1D functions, enhancing existing spline-based methods while remaining compatible with gradient backpropagation. By integrating these non-linear functions with linear transformations, we can achieve the accuracy of larger models but with significantly smaller hidden dimensions, which is crucial for FPGA implementations. We evaluate PSA by implementing it in a Multi-Layer Perceptron (MLP)-based vision model, ResMLP, and testing it on the CIFAR-10 classification task. MLP is gaining increasing popularity due to its widespread use in large-language models. Our results confirm that PSA achieves equivalent accuracy with a 2\(\times\)smaller hidden size compared to conventional MLPs. Furthermore, by quantizing our non-linear function into a simple Lookup Table (LUT), we reduce the number of operations required by 45–28%, which offers significant benefits for hardware accelerators. To showcase this, we design an end-to-end unrolled streaming accelerator for ResMLP, demonstrating that our compressed model maintains an 88% accuracy while reducing LUT\(+\)DSP resource requirements by 25%, and doubling throughput to 32 kFPS. Additionally, we implement a fixed-size SIMD accelerator for the same compressed model that achieves a 62.1% improvement in throughput while only consuming 3.5% extra LUTs.
more »
« less
Compression with Attention: Learning in Lower Dimensions
With deep learning models ever ballooning in size to push state-ofthe- art accuracy improvements, efforts to find compact models have become necessary. To meet such an objective, we propose a novel operation called Personal Self-Attention (PSA). It is designed specifically to learn non-linear 1-D functions faster than existing architectures like Multi-Layer Perceptron (MLP) and Polynomial-based methods, while being highly compatible with gradient backpropagation. We show that by stacking and combining these non-linear functions with linear transformations, we can achieve the same accuracy as a larger model but with a hidden dimension that is significantly smaller. To test our contribution, we implemented PSA on an MLP-based vision model called ResMLP and tested it against vision classification tasks on SVHN, and CIFAR-10 datasets. We show how PSA pushes the pareto-front, achieving the same accuracy with 2 − 6× smaller hidden-dimension sizes compared to the conventional MLP structures. Further, by quantizing our non-linear function, the PSA can be mapped to a simple lookup table, allowing for very efficient translation to FPGA hardware. We demonstrate this by designing an unrolled high-throughput accelerator for ResMLP using nearly 1.5× fewer DSPs with PSA compared to a conventional MLP architecture while achieving the same accuracy of 86% and throughput of 29k FPS.
more »
« less
- Award ID(s):
- 2016390
- PAR ID:
- 10533920
- Publisher / Repository:
- Design Automation Conference
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER) arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four different ML models and four arrays were used for the estimation of only six variables for locating and characterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-Newton in prediction of target width and height, which was attributed to numerical smoothing present in the Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site.more » « less
-
Quantitative analysis of brain disorders such as Autism Spectrum Disorder (ASD) is an ongoing field of research. Machine learning and deep learning techniques have been playing an important role in automating the diagnosis of brain disorders by extracting discriminative features from the brain data. In this study, we propose a model called Auto-ASD-Network in order to classify subjects with Autism disorder from healthy subjects using only fMRI data. Our model consists of a multilayer perceptron (MLP) with two hidden layers. We use an algorithm called SMOTE for performing data augmentation in order to generate artificial data and avoid overfitting, which helps increase the classification accuracy. We further investigate the discriminative power of features extracted using MLP by feeding them to an SVM classifier. In order to optimize the hyperparameters of SVM, we use a technique called Auto Tune Models (ATM) which searches over the hyperparameter space to find the best values of SVM hyperparameters. Our model achieves more than 70% classification accuracy for 4 fMRI datasets with the highest accuracy of 80%. It improves the performance of SVM by 26%, the stand-alone MLP by 16% and the state of the art method in ASD classification by 14%. The implemented code will be available as GPL license on GitHub portal of our lab (https://github.com/PCDS).more » « less
-
Hyperdimensional computing (HDC) has emerged as a new light-weight learning algorithm with smaller computation and energy requirements compared to conventional techniques. In HDC, data points are represented by high dimensional vectors (hypervectors), which are mapped to high dimensional space (hyperspace). Typically, a large hypervector dimension (≥1000) is required to achieve accuracies comparable to conventional alternatives. However, unnecessarily large hypervectors increase hardware and energy costs, which can undermine their benefits. This paper presents a technique to minimize the hypervector dimension while maintaining the accuracy and improving the robustness of the classifier. To this end, we formulate hypervector design as a multi-objective optimization problem for the first time in the literature. The proposed approach decreases the hypervector dimension by more than 128× while maintaining or increasing the accuracy achieved by conventional HDC. Experiments on a commercial hardware platform show that the proposed approach achieves more than two orders of magnitude reduction in model size, inference time, and energy consumption. We also demonstrate the trade-off between accuracy and robustness to noise and provide Pareto front solutions as a design parameter in our hypervector design.more » « less
-
A core component present in many successful neural network architectures, is an MLP block of two fully connected layers with a non-linear activation in between. An intriguing phenomenon observed empirically, including in transformer architectures, is that, after training, the activations in the hidden layer of this MLP block tend to be extremely sparse on any given input. Unlike traditional forms of sparsity, where there are neurons/weights which can be deleted from the network, this form of {\em dynamic} activation sparsity appears to be harder to exploit to get more efficient networks. Motivated by this we initiate a formal study of PAC learnability of MLP layers that exhibit activation sparsity. We present a variety of results showing that such classes of functions do lead to provable computational and statistical advantages over their non-sparse counterparts. Our hope is that a better theoretical understanding of {\em sparsely activated} networks would lead to methods that can exploit activation sparsity in practice.more » « less
An official website of the United States government

