skip to main content


Title: Polarization-diverse soliton transitions and deterministic switching dynamics in strongly-coupled and self-stabilized microresonator frequency combs
Abstract

Dissipative Kerr soliton microcombs in microresonators have enabled fundamental advances in chip-scale precision metrology, communication, spectroscopy, and parallel signal processing. Here we demonstrate polarization-diverse soliton transitions and deterministic switching dynamics of a self-stabilized microcomb in a strongly-coupled dispersion-managed microresonator driven with a single pump laser. The switching dynamics are induced by the differential thermorefractivity between coupled transverse-magnetic and transverse-electric supermodes during the forward-backward pump detunings. The achieved large soliton existence range and deterministic transitions benefit from the switching dynamics, leading to the cross-polarized soliton microcomb formation when driven in the transverse-magnetic supermode of the single resonator. Secondly, we demonstrate two distinct polarization-diverse soliton formation routes – arising from chaotic or periodically-modulated waveforms via pump power selection. Thirdly, to observe the cross-polarized supermode transition dynamics, we develop a parametric temporal magnifier with picosecond resolution, MHz frame rate and sub-ns temporal windows. We construct picosecond temporal transition portraits in 100-ns recording length of the strongly-coupled solitons, mapping the transitions from multiple soliton molecular states to singlet solitons. This study underpins polarization-diverse soliton microcombs for chip-scale ultrashort pulse generation, supporting applications in frequency and precision metrology, communications, spectroscopy and information processing.

 
more » « less
PAR ID:
10533947
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
7
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kerr microcombs hold the promise of bringing frequency combs onto the chip and into a variety of applications requiring low size, weight, power, and cost. However, reliable Kerr microcomb generation is hindered by the thermal effect and multistability of dissipative Kerr solitons (DKSs). Past approaches toward Kerr microcomb reliability include either deterministic single-soliton generation or self-starting soliton behavior but not both. Here we describe a regime of DKSs that isbothdeterministic and self-starting, in which only a single soliton can stably exist. We term this new DKS regime “monostable DKSs” (MS-DKSs) as all other optical behaviors, such as continuous-wave-only and multiple solitons, are fundamentally forbidden by the design. We establish a graphical model to describe MS-DKSs and discuss the design principles of MS-DKSs. We numerically demonstrate the MS-DKS behavior in an example periodically poled lithium niobate microring resonator.

     
    more » « less
  2. Soliton microcombs provide a chip-based, octave-spanning source for self-referencing and optical metrology. We use a silicon nitride integrated photonics foundry to manufacture 280 single-chip solutions of octave-spanning microcombs on a wafer. By group-velocity dispersion (GVD) engineering with the waveguide cross section, we shape the soliton spectrum for dispersive-wave spectral enhancements at the frequencies for f-2f self-referencing. Moreover, we demonstrate the other considerations, including models for soliton spectrum design, ultra-broadband resonator external coupling, low-loss edge couplers, and the nonlinear self-interactions of few-cycle solitons. To cover the fabrication tolerance, we systematically scan 336 parameter sets of resonator width and radius, ensuring at least one device on each chip can yield an octave-spanning comb with an electronically detectable carrier-envelope offset frequency, which has been supported by our experiment. Our design and testing process permit highly repeatable creation of single-chip solutions of soliton microcombs optimized for pump operation ∼100 mW and high comb mode power for f-2f detection, which is the central component of a compact microsystem for optical metrology.

     
    more » « less
  3. Abstract

    The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. The deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable, continuous-variable-based quantum information processing.

     
    more » « less
  4. Abstract

    Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.

     
    more » « less
  5. Abstract

    Femtosecond mode-locked laser frequency combs have served as the cornerstone in precision spectroscopy, all-optical atomic clocks, and measurements of ultrafast dynamics. Recently frequency microcombs based on nonlinear microresonators have been examined, exhibiting remarkable precision approaching that of laser frequency combs, on a solid-state chip-scale platform and from a fundamentally different physical origin. Despite recent successes, to date, the real-time dynamical origins and high-power stabilities of such frequency microcombs have not been fully addressed. Here, we unravel the transitional dynamics of frequency microcombs from chaotic background routes to femtosecond mode-locking in real time, enabled by our ultrafast temporal magnifier metrology and improved stability of dispersion-managed dissipative solitons. Through our dispersion-managed oscillator, we further report a stability zone that is more than an order-of-magnitude larger than its prior static homogeneous counterparts, providing a novel platform for understanding ultrafast dissipative dynamics and offering a new path towards high-power frequency microcombs.

     
    more » « less