skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial Manipulative Note-Taking Tool for Small Group Face-to-Face Collaboration in Science Class
This study explored the Idea Wall, a collaborative knowledge-building tool to support students’ collaboration in small groups during a plant biology science curriculum. We examined the affordances and challenges of the Idea Wall and found the effective use of the tool's spatial organization capabilities by students, particularly the Yup Zone and the intermediary neutral spaces, for collaboratively organizing notes. But there's also a need for improvements in some features of the tool’s design and instructional guidance.  more » « less
Award ID(s):
2010456
PAR ID:
10534149
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the 17th International Conference on Computer-Supported Collaborative Learning - CSCL 2024
Date Published:
Page Range / eLocation ID:
431 to 432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Idea Wall is a collaborative technology that aims to support collective knowledge construction and idea negotiation across multiple social configurations. Further, to support multiple entry points for student collaboration, the Idea Wall provides (and requires) multiple modalities for interaction through text, collaborative discourse, and spatial orientation of ideas. To support the teacher in implementing and orchestrating Idea Wall activities, we designed: 1) an authoring portal to enable teachers to quickly create Idea Wall instances; 2) a whole class view to support whole class discussions; and 3) a set of real-time agents that can alert the teacher when students may need teacher intervention or new groupings based on natural language processing of students’ co-constructed ideas within the Idea Wall. 
    more » « less
  2. Clarke_Midura, J; Kollar, I; Gu, X; D’Angelo, C (Ed.)
    This study explored the Idea Wall, a collaborative knowledge-building tool to support students’ collaboration in small groups during a plant biology science curriculum. We examined the affordances and challenges of the Idea Wall and found the effective use of the tool's spatial organization capabilities by students, particularly the Yup Zone and the intermediary neutral spaces, for collaboratively organizing notes. But there's also a need for improvements in some features of the tool’s design and instructional guidance. 
    more » « less
  3. We examined how Idea Wall, a collaboration spatially manipulable interactive note tool, supports collaborative scientific reasoning among students. Through a design-based research approach, the study also aims to identify potential improvements to the tool that can better support collaborative interactions. The Idea Wall has the ability to facilitate spatial manipulation and interactive note-taking supported student engagement and collaboration. This paper contributes to the growing body of research on the use of interactive tools to enhance scientific reasoning skills in collaborative learning environments. By researching the affordances and challenges of the tool, this study provides valuable insights into the design considerations and potential improvements of such tools in building new norms of collaborative discussion for a knowledge community. 
    more » « less
  4. null (Ed.)
    The Introduction to engineering (EGGN-100) is a project-based course offered every fall semester to first-year students with undecided engineering majors at California State University, Fullerton (CSUF). The primary objective of this course is to provide project-based learning (PBL) and introduce these students to major projects in Civil, Mechanical, Electrical, and Computer Engineering projects so that they can make an informed decision about their major. The PBL is an active learning method that aims to engage students in acquiring knowledge and skills through real-world experiences and well-planned project activities in engineering disciplines. The course comprises four team-based unique projects related to Civil, Mechanical, Electrical, and Computer Engineering. The project involves using a variety of engineering tools like AutoCAD, Multisim, and Arduino platforms. For the first time, due to the COVID-19 pandemic, the hands-on project-based EGGN-100 course was offered virtually. In this research, we document the learning experiences of students who attended EGGN-100 in a traditional face-to-face mode of instruction and students who participated in the same course in a virtual instruction mode. Surveys conducted during seemingly different modes of instruction show varying levels of satisfaction among students. Of the students who attended the course in traditional and instructional instruction mode, 69% and 90% responded that discipline-specific projects enabled them to make an informed decision, and PBL helped them choose their preferred major. Even the percentage of students who believed the PBL helped them make an informed decision about their major, they like to do more hands-on projects and prefer to attend the classes on campus. Students rated higher satisfaction in virtual instructional mode primarily due to the availability of video lectures, self-paced learning, and readily accessible project simulations. Learning by doing would have bought out the challenges and minor nuances of designing and executing an engineering project. Learning by watching is surficial and not necessarily exposes students to minor details that are critical. As such, the significance of this study is that maybe, after all, not all courses can be taught in a virtual environment, and some courses may be strictly taught in a traditional, hands-on instruction mode. We also study the socio-psychological impact of traditional and virtual learning experiences and report the remedies to cope with stress and loneliness in the online learning environment. 
    more » « less
  5. Starting in March 2020, the COVID19 pandemic instantly affected the education of 14 million higher education students in the USA. The switch to remote instruction caught instructors and students off guard – teachers had to change their techniques, approaches, and course content rapidly (called “panicgogy”), and students had to adjust to remote instruction in a hurry. Hoping that the pandemic would not last too long, most had expected to return to the regular class format at most by the Fall semester. That expectation was quickly squashed as the summer semester progressed. If one were teaching a face-to-face classroom in a flipped modality, it would be even more challenging to teach a flipped class in an online environment. In this paper, we present how the instructor overhauled a face-to-face flipped class in Numerical Methods to an online environment. This involved 1) rethinking the learning design of the course content via the learning management system, 2) using Microsoft forms as personal response systems, and YouTube for video lectures, 3) not only using break-out rooms for peer-to-peer learning but the “main room” for individual learning as well, 4) exploit the availability of two computers and multiple monitors to deliver and observe the synchronous part of the class, 5) use of discussion boards to streamline the flow of communication that would have otherwise been unwieldy for the instructor, TAs, and students alike, 6) changes made to assessment as it had to be carried online and within a proctoring software environment, 7) changes in the conducting of office hours. The above items will be discussed in the paper, and comparisons of face-to-face and online implementations will be made. The ultimate goal is to present a logic model for a typical lecture-based online flipped STEM classroom for efficient and effective implementation by other instructors. 
    more » « less