skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NEAT: Distilling 3D Wireframes from Neural Attraction Fields
• This paper studies the problem of structured 3D reconstruction using wireframes that consist of line segments and junctions, focusing on the computation of structured boundary geometries of scenes. Instead of leveraging matching-based solutions from 2D wireframes (or line segments) for 3D wireframe reconstruction as done in prior arts, we present NEAT, a rendering-distilling formulation using neural fields to represent 3D line segments with 2D observations, and bipartite matching for perceiving and dis- tilling of a sparse set of 3D global junctions. The proposed NEAT enjoys the joint optimization of the neural fields and the global junctions from scratch, using view-dependent 2D observations without precomputed cross-view feature matching. Comprehensive experiments on the DTU and BlendedMVS datasets demonstrate our NEAT’s superiority over state-of-the-art alternatives for 3D wireframe reconstruction. Moreover, the distilled 3D global junctions by NEAT, are a better initialization than SfM points, for the recently-emerged 3D Gaussian Splatting for high-fidelity novel view synthesis using about 20 times fewer initial 3D points.  more » « less
Award ID(s):
1909644
PAR ID:
10534201
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE CVPR
Date Published:
ISBN:
979-8-3503-0129-8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents Holistically-Attracted Wireframe Parsing (HAWP), a method for geometric analysis of 2D images containing wireframes formed by line segments and junctions. HAWP utilizes a parsimonious Holistic Attraction (HAT) field representation that encodes line segments using a closed-form 4D geometric vector field. The proposed HAWP consists of three sequential components empowered by end-to-end and HAT-driven designs: (1) generating a dense set of line segments from HAT fields and endpoint proposals from heatmaps, (2) binding the dense line segments to sparse endpoint proposals to produce initial wireframes, and (3) filtering false positive proposals through a novel endpoint-decoupled line-of-interest aligning (EPD LOIAlign) module that captures the co-occurrence between endpoint proposals and HAT fields for better verification. Thanks to our novel designs, HAWPv2 shows strong performance in fully supervised learning, while HAWPv3 excels in self-supervised learning, achieving superior repeatability scores and efficient training (24 GPU hours on a single GPU). Furthermore, HAWPv3 exhibits a promising potential for wireframe parsing in out-of-distribution images without providing ground truth labels of wireframes. 
    more » « less
  2. This paper presents a neural incremental Structure-from-Motion (SfM) approach, Level-S2fM, which estimates the camera poses and scene geometry from a set of uncalibrated images by learning coordinate MLPs for the implicit surfaces and the radiance fields from the established key-point correspondences. Our novel formulation poses some new challenges due to inevitable two-view and few-view configurations in the incremental SfM pipeline, which complicates the optimization of coordinate MLPs for volumetric neural rendering with unknown camera poses. Nevertheless, we demonstrate that the strong inductive basis conveying in the 2D correspondences is promising to tackle those challenges by exploiting the relationship between the ray sampling schemes. Based on this, we revisit the pipeline of incremental SfM and renew the key components, including two-view geometry initialization, the camera poses registration, the 3D points triangulation, and Bundle Adjustment, with a fresh perspective based on neural implicit surfaces. By unifying the scene geometry in small MLP networks through coordinate MLPs, our Level-S2fM treats the zero-level set of the implicit surface as an informative top-down regularization to manage the reconstructed 3D points, reject the outliers in correspondences via querying SDF, and refine the estimated geometries by NBA (Neural BA). Not only does our Level-S2fM lead to promising results on camera pose estimation and scene geometry reconstruction, but it also shows a promising way for neural implicit rendering without knowing camera extrinsic beforehand. 
    more » « less
  3. We present a method for 3D non-rigid motion tracking and structure reconstruction from 2D points and curve segments from a sequence of perspective images. The 3D locations of features in the first frame are known. The 3D affine motion model is used to describe the nonrigid motion. The results from synthetic and real data are presented. The applications include: lip tracking, MPEG4 face player, and burn scar assessment. The results show that: 1) curve segments are more robust under noise (observed from synthetic data with different Gaussian noise level); and 2) using both feature yields a significant performance gain in real data. 
    more » « less
  4. Multi-view triangulation is the gold standard for 3D reconstruction from 2D correspondences given known calibration and sufficient views. However in practice, expensive multi-view setups – involving tens sometimes hundreds of cameras – are required in order to obtain the high fidelity 3D reconstructions necessary for many modern applications. In this paper we present a novel approach that leverages recent advances in 2D-3D lifting using neural shape priors while also enforcing multi-view equivariance. We show how our method can achieve comparable fidelity to expensive calibrated multi-view rigs using a limited (2-3) number of uncalibrated camera views. 
    more » « less
  5. This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT). 
    more » « less