skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Memfhe: End-to-end computing with fully homomorphic encryption in memory. ACM Transactions on Embedded Computing Systems, 23(2), pp.1-23.
Award ID(s):
2120019
PAR ID:
10534250
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM Digital Library
Date Published:
Journal Name:
ACM transactions on embedded computing systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent technological advances have contributed to the rapid increase in algorithmic complexity of applications, ranging from signal processing to autonomous systems. To control this complexity and endow heterogeneous computing systems with autonomous programming and optimization capabilities, we propose aunified, end-to-end, programmable graph representation learning(PGL) framework that mines the complexity of high-level programs down to low-level virtual machine intermediate representation, extracts specific computational patterns, and predicts which code segments run best on a core in heterogeneous hardware. PGL extracts multifractal features from code graphs and exploits graph representation learning strategies for automatic parallelization and correct assignment to heterogeneous processors. The comprehensive evaluation of PGL on existing and emerging complex software demonstrates a 6.42x and 2.02x speedup compared to thread-based execution and state-of-the-art techniques, respectively. Our PGL framework leads to higher processing efficiency, which is crucial for future AI and high-performance computing applications such as autonomous vehicles and machine vision. 
    more » « less
  2. We introduce a new end-to-end software environment that enables experimentation with using SciTokens for capability-based authorization in scientific computing. This set of interconnected Docker containers enables science projects to gain experience with the SciTokens model prior to adoption. It is a product of our SciAuth project, which supports the adoption of the SciTokens model through community engagement, support for coordinated adoption of community standards, assistance with software integration, security analysis and threat modeling, training, and workforce development. 
    more » « less
  3. Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design. 
    more » « less