skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incorporating Intracellular Processes in Virus Dynamics Models
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus–host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.  more » « less
Award ID(s):
2051820
PAR ID:
10534283
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Microorganisms
Volume:
12
Issue:
5
ISSN:
2076-2607
Page Range / eLocation ID:
900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Viral evolution unfolds across nested layers of adaptation, much like a set of Matryoshka dolls. The outermost, well-studied layer involves interactions between viruses and their hosts—where immune evasion, cross-species transmission, and long-term coevolution drive viral diversification. Yet, hidden within this framework is an often-overlooked inner layer: the coevolution of viruses with their own molecular parasites, defective interfering (DI) particles, and defective viral genomes (DVGs). These molecular parasites exploit viral replication machinery, reshaping infection dynamics and imposing selective pressures that influence viral fitness, transmission, and persistence. This perspective synthesizes evidence from experimental evolution, mathematical modeling, and molecular virology to propose a more integrated view of viral evolution. By framing host–virus interactions and virus-DI particle dynamics within a unified evolutionary framework, we highlight the underappreciated role of DI particles as evolutionary players, not just aberrant byproducts. Recognizing these internal layers of viral evolution may inform the development of antiviral strategies and broader questions in host–pathogen coevolution. 
    more » « less
  2. null (Ed.)
    RNA viruses, such as influenza and Severe Acute Respiratory Syndrome (SARS), invoke excessive immune responses; however, the kinetics that regulate inflammatory responses within infected cells remain unresolved. Here, we develop a mathematical model of the RNA virus sensing pathways, to determine the intracellular events that primarily regulate interferon, an important protein for the activation and management of inflammation. Within the ordinary differential equation (ODE) model, we incorporate viral replication, cell death, interferon stimulated genes’ antagonistic effects on viral replication, and virus sensor protein (TLR and RIG-I) kinetics. The model is parameterized to influenza infection data using Markov chain Monte Carlo and then validated against infection data from an NS1 knockout strain of influenza, demonstrating that RIG-I antagonism significantly alters cytokine signaling trajectory. Global sensitivity analysis suggests that paracrine signaling is responsible for the majority of cytokine production, suggesting that rapid cytokine production may be best managed by influencing extracellular cytokine levels. As most of the model kinetics are host cell specific and not virus specific, the model presented provides an important step to modeling the intracellular immune dynamics of many RNA viruses, including the viruses responsible for SARS, Middle East Respiratory Syndrome (MERS), and Coronavirus Disease (COVID-19). 
    more » « less
  3. Abstract The fields of viral ecology and evolution are rapidly expanding, motivated in part by concerns around emerging zoonoses. One consequence is the proliferation of host–virus association data, which underpin viral macroecology and zoonotic risk prediction but remain fragmented across numerous data portals. In the present article, we propose that synthesis of host–virus data is a central challenge to characterize the global virome and develop foundational theory in viral ecology. To illustrate this, we build an open database of mammal host–virus associations that reconciles four published data sets. We show that this offers a substantially richer view of the known virome than any individual source data set but also that databases such as these risk becoming out of date as viral discovery accelerates. We argue for a shift in practice toward the development, incremental updating, and use of synthetic data sets in viral ecology, to improve replicability and facilitate work to predict the structure and dynamics of the global virome. 
    more » « less
  4. Marilyn J. Roossinck (Ed.)
    Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean. 
    more » « less
  5. Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean. 
    more » « less