Abstract Snake venoms are complex mixtures of toxic proteins that hold significant medical, pharmacological and evolutionary interest. To better understand the genetic diversity underlying snake venoms, we developed VenomCap, a novel exon‐capture probe set targeting toxin‐coding genes from a wide range of elapid snakes, with a particular focus on the ecologically diverse and medically important subfamily Hydrophiinae. We tested the capture success of VenomCap across 24 species, representing all major elapid lineages. We included snake phylogenomic probes in the VenomCap capture set, allowing us to compare capture performance between venom and phylogenomic loci and to infer elapid phylogenetic relationships. We demonstrated VenomCap's ability to recover exons from ~1500 target markers, representing a total of 24 known venom gene families, which includes the dominant gene families found in elapid venoms. We find that VenomCap's capture results are robust across all elapids sampled, and especially among hydrophiines, with respect to measures of target capture success (target loci matched, sensitivity, specificity and missing data). As a cost‐effective and efficient alternative to full genome sequencing, VenomCap can dramatically accelerate the sequencing and analysis of venom gene families. Overall, our tool offers a model for genomic studies on snake venom gene diversity and evolution that can be expanded for comprehensive comparisons across the other families of venomous snakes.
more »
« less
Whole snake genomes from eighteen families of snakes (Serpentes: Caenophidia) and their applications to systematics
Abstract We present genome assemblies for 18 snake species representing 18 families (Serpentes: Caenophidia): Acrochordus granulatus, Aparallactus werneri, Boaedon fuliginosus, Calamaria suluensis, Cerberus rynchops, Grayia smithii, Imantodes cenchoa, Mimophis mahfalensis, Oxyrhabdium leporinum, Pareas carinatus, Psammodynastes pulverulentus, Pseudoxenodon macrops, Pseudoxyrhopus heterurus, Sibynophis collaris, Stegonotus admiraltiensis, Toxicocalamus goodenoughensis, Trimeresurus albolabris, and Tropidonophis doriae. From these new genome assemblies, we extracted thousands of loci commonly used in systematic and phylogenomic studies on snakes, including target-capture datasets composed of ultraconserved elements (UCEs) and anchored hybrid enriched loci (AHEs), as well as traditional Sanger loci. Phylogenies inferred from the two target-capture loci datasets were identical with each other and strongly congruent with previously published snake phylogenies. To show the additional utility of these non-model genomes for investigative evolutionary research, we mined the genome assemblies of two New Guinea island endemics in our dataset (S. admiraltiensis and T. doriae) for the ATP1a3 gene, a thoroughly researched indicator of resistance to toad toxin ingestion by squamates. We find that both these snakes possess the genotype for toad toxin resistance despite their endemism to New Guinea, a region absent of any toads until the human-mediated introduction of Cane Toads in the 1930s. These species possess identical substitutions that suggest the same bufotoxin resistance as their Australian congenerics (Stegonotus australis and Tropidonophis mairii) which forage on invasive Cane Toads. Herein, we show the utility of short-read high-coverage genomes, as well as improving the deficit of available squamate genomes with associated voucher specimens.
more »
« less
- PAR ID:
- 10534408
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Heredity
- Volume:
- 115
- Issue:
- 5
- ISSN:
- 0022-1503
- Format(s):
- Medium: X Size: p. 487-497
- Size(s):
- p. 487-497
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sunda-Papuan keelback snakes (Serpentes: Natricidae: Tropidonophis Jan 1863) include 20 species distributed from the Philippines south-east through the Moluccas to New Guinea and Australia. Diversity of this insular snake lineage peaks on the island of New Guinea. Previous phylogenetic studies incorporating Tropidonophis have been limited to multi-locus Sanger-sequenced datasets with broad squamate or family-level focus. We used a targeted-sequence capture approach to sequence thousands of nuclear ultraconserved elements (UCEs) to construct the most comprehensive sequence-based phylogenetic hypothesis for this genus and estimate ancestral biogeography. Phylogenies indicate the genus is monophyletic given recent taxonomic reassignment of Rhabdophis spilogaster to Tropidonophis. All UCE phylogenies recovered a monophyletic Tropidonophis with reciprocally monophyletic Philippine and New Guinean clades. Divergence dating and ancestral range estimation suggest dispersal to New Guinea from the Philippines to have occurred during the Mid-Miocene via the Oceanic Arc Terranes. From Late Miocene into the Pliocene the genus experienced rapid diversification from orogeny of the New Guinean Central Cordillera from Oceanic Arc Terrane accretion on the northern boundary of the Sahul Shelf. Future collecting of missing taxa from the Moluccas and Indonesian Papua will better the understanding of non-volant faunal biogeography and diversification in this tectonically complex Pacific arena.more » « less
-
Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome ofBothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A2(PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.more » « less
-
Abstract Allopolyploids represent a new frontier in species discovery among embryophytes. Within mosses, allopolyploid discovery is challenged by low morphological complexity. The rapid expansion of sequencing approaches in addition to computational developments to identifying genome merger and whole-genome duplication using variation among nuclear loci representing homeologs has allowed for increased allopolyploid discovery among mosses. Here, we test a novel approach to phasing homeologs within loci and phasing loci across subgenomes, or subgenome assignment, called Homologizer, in the family Funariaceae. We confirm the intergeneric hybrid nature of Entosthodon hungaricus, and the allopolyploid origin of Physcomitrium eurystomum and one population of Physcomitrium collenchymatum. We also reveal that hybridization gave rise to Physcomitrium immersum, as well as to yet unrecognized lineages sharing the phenotype of Physcomitrium pyriforme and Physcomitrium sphaericum. Our findings demonstrate the utility of our approach when working with polyploid genomes, and its value in identifying progenitor species using target capture data.more » « less
-
Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.more » « less
An official website of the United States government
