ABSTRACT We present photometric metallicity measurements for a sample of 2.6 million bulge red clump stars extracted from the Blanco DECam Bulge Survey (BDBS). Similar to previous studies, we find that the bulge exhibits a strong vertical metallicity gradient, and that at least two peaks in the metallicity distribution functions appear at b < −5°. We can discern a metal-poor ([Fe/H] ∼ −0.3) and metal-rich ([Fe/H] ∼ +0.2) abundance distribution that each show clear systematic trends with latitude, and may be best understood by changes in the bulge’s star formation/enrichment processes. Both groups exhibit asymmetric tails, and as a result we argue that the proximity of a star to either peak in [Fe/H] space is not necessarily an affirmation of group membership. The metal-poor peak shifts to lower [Fe/H] values at larger distances from the plane while the metal-rich tail truncates. Close to the plane, the metal-rich tail appears broader along the minor axis than in off-axis fields. We also posit that the bulge has two metal-poor populations – one that belongs to the metal-poor tail of the low latitude and predominantly metal-rich group, and another belonging to the metal-poor group that dominates in the outer bulge. We detect the X-shape structure in fields with |Z| > 0.7 kpc and for stars with [Fe/H] > −0.5. Stars with [Fe/H] < −0.5 may form a spheroidal or ‘thick bar’ distribution while those with [Fe/H] $$\gtrsim$$ −0.1 are strongly concentrated near the plane.
more »
« less
The Blanco DECam Bulge Survey (BDBS): VIII. Chemo-kinematics in the southern Galactic bulge from 2.3 million red clump stars with Gaia DR3 proper motions
Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]> − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity.
more »
« less
- Award ID(s):
- 2009836
- PAR ID:
- 10534434
- Publisher / Repository:
- Astronomy & Astrophysics, Volume 682, id.A96, 13 pp.
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 682
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A96
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RR Lyrae stars toward the Galactic bulge are used to investigate whether this old stellar population traces the Galactic bar. Although the bar is known to dominate the mass in the inner Galaxy, there is no consensus on whether the RR Lyrae star population, which constitutes some of the most ancient stars in the bulge and thus traces the earliest epochs of star formation, contributes to the barred bulge. We create new reddening maps and derive new extinction laws from visual to near-infrared passbands using improved RR Lyrae period-absolute magnitude-metallicity relations, enabling distance estimates for individual bulge RR Lyrae variables. The extinction law is most uniform inRIKsandRJKsand the distances to individual RR Lyrae based on these colors are determined with an accuracy of 6 and 4%, respectively. Using only the near-infrared passbands for distance estimation, we infer the distance to the Galactic center equal todcenJKs= 8217 ± 1(stat) ± 528(sys) pc after geometrical correction. We show that variations in the extinction law toward the Galactic bulge can mimic a barred spatial distribution in the bulge RR Lyrae star population in visual passbands. This arises from a gradient in extinction differences along Galactic longitudes and latitudes, which can create the perception of the Galactic bar, particularly when using visual passband-based distances. A barred angle in the RR Lyrae spatial distribution disappears when near-infrared passband-based distances are used, as well as when reddening law variations are incorporated in visual passband-based distances. The prominence of the bar, traced by RR Lyrae stars, depends on their metallicity, with metal-poor RR Lyrae stars ([Fe/H] < −1.0 dex) showing little to no tilt with respect to the bar. Metal-rich ([Fe/H] > −1.0 dex) RR Lyrae stars do show a barred bulge signature in spatial properties derived using near-infrared distances, with an angle ofι= 18 ± 5 deg, consistent with previous bar measurements from the literature. This also hints at a younger age for this RR Lyrae subgroup. The 5D kinematic analysis, primarily based on transverse velocities, indicates a rotational lag in RR Lyrae stars compared to red clump giants. Despite variations in the extinction law, our kinematic conclusions are robust across different distance estimation methods.more » « less
-
null (Ed.)ABSTRACT The metal-poor stars in the bulge are important relics of the Milky Way’s formation history, as simulations predict that they are some of the oldest stars in the Galaxy. In order to determine if they are truly ancient stars, we must understand their origins. Currently, it is unclear if the metal-poor stars in the bulge ([Fe/H] < −1 dex) are merely halo interlopers, a unique accreted population, part of the boxy/peanut-shaped bulge, or a classical bulge population. In this work, we use spectra from the VLT/FLAMES spectrograph to obtain metallicity estimates using the Ca-II triplet of 473 bulge stars (187 of which have [Fe/H] < −1 dex), targeted using SkyMapper photometry. We also use Gaia DR2 data to infer the Galactic positions and velocities along with orbital properties for 523 stars. We employ a probabilistic orbit analysis and find that about half of our sample has a >50 per cent probability of being bound to the bulge, and half are halo interlopers. We also see that the occurrence rate of halo interlopers increases steadily with decreasing metallicity across the full range of our sample (−3 < [Fe/H] < 0.5). Our examination of the kinematics of the confined compared to the unbound stars indicates the metal-poor bulge comprises at least two populations; those confined to the boxy/peanut bulge and halo stars passing through the inner galaxy. We conclude that an orbital analysis approach, as we have employed, is important to understand the composite nature of the metal-poor stars in the inner region.more » « less
-
In this work, we derive systemic velocities for 8456 RR Lyrae stars. This is the largest dataset of these variables in the Galactic bulge to date. In combination withGaiaproper motions, we computed their orbits using an analytical gravitational potential similar to that of the Milky Way (MW) and identified interlopers from other MW structures, which amount to 22% of the total sample. Our analysis revealed that most interlopers are associated with the halo, and the remainder are linked to the Galactic disk. We confirm the previously reported lag in the rotation curve of bulge RR Lyrae stars, regardless of the removal of interlopers. The rotation patterns of metal-rich RR Lyrae stars are consistent with the pattern of nonvariable metal-rich giants, following the MW bar, while metal-poor stars rotate more slowly. The analysis of the orbital parameter space was used to distinguish bulge stars that in the bar reference frame have prograde orbits from those on retrograde orbits. We classified the prograde stars into orbital families and estimated the chaoticity (in the form of the frequency drift, log ΔΩ) of their orbits. RR Lyrae stars with banana-like orbits have a bimodal distance distribution, similar to the distance distribution seen in metal-rich red clump stars. The fraction of stars with banana-like orbits decreases linearly with metallicity, as does the fraction of stars on prograde orbits (in the bar reference frame). The retrograde-moving stars (in the bar reference frame) form a centrally concentrated nearly spherical distribution. From analyzing anN-body+SPH simulation, we found that some stellar particles in the central parts oscillate between retrograde and prograde orbits and that only a minority stays prograde over a long period of time. Based on the simulation, the ratio of prograde and retrograde stellar particles seems to stabilize within some gigayears after the bar formation. The nonchaoticity of retrograde orbits and their high numbers can explain some of the spatial and kinematical features of the MW bulge that have been often associated with a classical bulge.more » « less
-
Aims. The Blanco DECam Bulge Survey (BDBS) has imaged more than 200 square degrees of the southern Galactic bulge, providing photometry in the ugrizy filters for ∼250 million unique stars. The presence of a strong foreground disk population, along with complex reddening and extreme image crowding, has made it difficult to constrain the presence of young and intermediate age stars in the bulge population. Methods. We employed an accurate cross-match of BDBS with the latest data release (EDR3) from the Gaia mission, matching more than 140 million sources with BDBS photometry and Gaia EDR3 photometry and astrometry. We relied on Gaia EDR3 astrometry, without any photometric selection, to produce clean BDBS bulge colour-magnitude diagrams (CMDs). Gaia parallaxes were used to filter out bright foreground sources, and a Gaussian mixture model fit to Galactic proper motions could identify stars kinematically consistent with bulge membership. We applied this method to 127 different bulge fields of 1 deg 2 each, with | ℓ | ≤ 9.5° and −9.5° ≤ b ≤ −2.5°. Results. The astrometric cleaning procedure removes the majority of blue stars in each field, especially near the Galactic plane, where the ratio of blue to red stars is ≲10%, increasing to values ∼20% at higher Galactic latitudes. We rule out the presence of a widespread population of stars younger than 2 Gyr. The vast majority of blue stars brighter than the turnoff belong to the foreground population, according to their measured astrometry. We introduce the distance between the observed red giant branch bump and the red clump as a simple age proxy for the dominant population in the field, and we confirm the picture of a predominantly old bulge. Further work is needed to apply the method to estimate ages to fields at higher latitudes, and to model the complex morphology of the Galactic bulge. We also produce transverse kinematic maps, recovering expected patterns related to the presence of the bar and of the X-shaped nature of the bulge.more » « less
An official website of the United States government

