skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization
Award ID(s):
2153854
PAR ID:
10534526
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Public Library of Science (PLOS)
Date Published:
Journal Name:
PloS one
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Great storytellers know how to take us on a journey. They direct characters to act—not necessarily in the most rational way—but rather in a way that leads to interesting situations, and ultimately creates an impactful experience for audience members looking on. If audience experience is what matters most, then can we help artists and animators directly craft such experiences, independent of the concrete character actions needed to evoke those experiences? In this paper, we offer a novel computational framework for such tools. Our key idea is to optimize animations with respect to simulated audience members’ experiences. To simulate the audience, we borrow an established principle from cognitive science: that human social intuition can be modeled as “inverse planning,” the task of inferring an agent’s (hidden) goals from its (observed) actions. Building on this model, we treat storytelling as “inverse inverse planning,” the task of choosing actions to manipulate an inverse planner’s inferences. Our framework is grounded in literary theory, naturally capturing many storytelling elements from first principles. We give a series of examples to demonstrate this, with supporting evidence from human subject studies. 
    more » « less
  2. Inverse reinforcement learning (IRL) deals with estimating an agent’s utility function from its actions. In this paper, we consider how an agent can hide its strategy and mitigate an adversarial IRL attack; we call this inverse IRL (I-IRL). How should the decision maker choose its response to ensure a poor reconstruction of its strategy by an adversary performing IRL to estimate the agent’s strategy? This paper comprises four results: First, we present an adversarial IRL algorithm that estimates the agent’s strategy while controlling the agent’s utility function. Then, we propose an I-IRL result that mitigates the IRL algorithm used by the adversary. Our I-IRL results are based on revealed preference theory in microeconomics. The key idea is for the agent to deliberately choose sub-optimal responses so that its true strategy is sufficiently masked. Third, we give a sample complexity result for our main I-IRL result when the agent has noisy estimates of the adversary-specified utility function. Finally, we illustrate our I-IRL scheme in a radar problem where a meta-cognitive radar is trying to mitigate an adversarial target. 
    more » « less
  3. null (Ed.)