skip to main content


This content will become publicly available on August 12, 2025

Title: More Efficient Randomized Exploration for Reinforcement Learning via Approximate Sampling
Thompson sampling (TS) is one of the most popular exploration techniques in reinforcement learning (RL). However, most TS algorithms with theoretical guarantees are difficult to implement and not generalizable to Deep RL. While the emerging approximate sampling-based exploration schemes are promising, most existing algorithms are specific to linear Markov Decision Processes (MDP) with suboptimal regret bounds, or only use the most basic samplers such as Langevin Monte Carlo. In this work, we propose an algorithmic framework that incorporates different approximate sampling methods with the recently proposed Feel-Good Thompson Sampling (FGTS) approach \citep{zhang2022feel,dann2021provably}, which was previously known to be computationally intractable in general. When applied to linear MDPs, our regret analysis yields the best known dependency of regret on dimensionality, surpassing existing randomized algorithms. Additionally, we provide explicit sampling complexity for each employed sampler. Empirically, we show that in tasks where deep exploration is necessary, our proposed algorithms that combine FGTS and approximate sampling perform significantly better compared to other strong baselines. On several challenging games from the Atari 57 suite, our algorithms achieve performance that is either better than or on par with other strong baselines from the deep RL literature.  more » « less
Award ID(s):
2323112
PAR ID:
10534564
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Reinforcement Learning Journal
Date Published:
Journal Name:
Reinforcement Learning Journal
Volume:
3
Issue:
1
ISSN:
2996-8577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of $\tilde{O}(d^{3/2}H^{3/2}\sqrt{T})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $T$ is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.\footnote{Our code is available at \url{https://github.com/hmishfaq/LMC-LSVI}} 
    more » « less
  2. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward. Although many algorithms have been proposed for contextual bandit, most of them rely on finding the maximum likelihood estimator at each iteration, which requires 𝑂(𝑡) time at the 𝑡-th iteration and are memory inefficient. A natural way to resolve this problem is to apply online stochastic gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant with respect to 𝑡, but a contextual bandit policy based on online SGD updates that balances exploration and exploitation has remained elusive. In this work, we show that online SGD can be applied to the generalized linear bandit problem. The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information and uses Thompson Sampling for exploration, achieves 𝑂̃ (𝑇‾‾√) regret with the total time complexity that scales linearly in 𝑇 and 𝑑, where 𝑇 is the total number of rounds and 𝑑 is the number of features. Experimental results show that SGD-TS consistently outperforms existing algorithms on both synthetic and real datasets. 
    more » « less
  3. Recent studies in reinforcement learning (RL) have made significant progress by leveraging function approximation to alleviate the sample complexity hurdle for better performance. Despite the success, existing provably efficient algorithms typically rely on the accessibility of immediate feedback upon taking actions. The failure to account for the impact of delay in observations can significantly degrade the performance of real-world systems due to the regret blow-up. In this work, we tackle the challenge of delayed feedback in RL with linear function approximation by employing posterior sampling, which has been shown to empirically outperform the popular UCB algorithms in a wide range of regimes. We first introduce Delayed-PSVI, an optimistic value-based algorithm that effectively explores the value function space via noise perturbation with posterior sampling. We provide the first analysis for posterior sampling algorithms with delayed feedback in RL and show our algorithm achieves $\widetilde{O}(\sqrt{d^3H^3 T} + d^2H^2 E[\tau])$ worst-case regret in the presence of unknown stochastic delays. Here $E[\tau]$ is the expected delay. To further improve its computational efficiency and to expand its applicability in high-dimensional RL problems, we incorporate a gradient-based approximate sampling scheme via Langevin dynamics for Delayed-LPSVI, which maintains the same order-optimal regret guarantee with $\widetilde{O}(dHK)$ computational cost. Empirical evaluations are performed to demonstrate the statistical and computational efficacy of our algorithms. 
    more » « less
  4. Daumé III, Hal ; Singh, Aarti (Ed.)
    Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice. However, its wider deployment is restricted due to a significant computational limitation: the need for samples from posterior distributions at every iteration. In practice, this limitation is alleviated by making use of approximate sampling methods, yet provably incorporating approximate samples into Thompson Sampling algorithms remains an open problem. In this work we address this by proposing two efficient Langevin MCMC algorithms tailored to Thompson sampling. The resulting approximate Thompson Sampling algorithms are efficiently implementable and provably achieve optimal instance-dependent regret for the Multi-Armed Bandit (MAB) problem. To prove these results we derive novel posterior concentration bounds and MCMC convergence rates for log-concave distributions which may be of independent interest. 
    more » « less
  5. We address the problem of regret minimization in logistic contextual bandits, where a learner decides among sequential actions or arms given their respective contexts to maximize binary rewards. Using a fast inference procedure with Pólya-Gamma distributed augmentation variables, we propose an improved version of Thompson Sampling, a Bayesian formulation of contextual bandits with near-optimal performance. Our approach, Pólya-Gamma augmented Thompson Sampling (PG-TS), achieves state-of-the-art performance on simulated and real data. PG-TS explores the action space efficiently and exploits high-reward arms, quickly converging to solutions of low regret. Its explicit estimation of the posterior distribution of the context feature covariance leads to substantial empirical gains over approximate approaches. PG-TS is the first approach to demonstrate the benefits of Pólya Gamma augmentation in bandits and to propose an efficient Gibbs sampler for approximating the analytically unsolvable integral of logistic contextual bandits. 
    more » « less