skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hypoeutectic Liquid Metal Printing of 2D Indium Gallium Oxide Transistors
2D native surface oxides formed on low melting temperature metals such as indium and gallium offer unique opportunities for fabricating high-performance flexible electronics and optoelectronics based on a new class of liquid metal printing (LMP). An inherent property of these Cabrera-Mott 2D oxides is their suboxide nature (e.g., In2O3−x), which leads high mobility LMP semiconductors to exhibit high electron concentrations (ne > 1019 cm−3) limiting electrostatic control. Binary alloying of the molten precursor can produce doped, ternary metal oxides such as In-X-O with enhanced electronic performance and greater bias-stress stability, though this approach demands a deeper understanding of the native oxides of alloys. This work presents an approach for hypoeutectic rapid LMP of crystalline InGaOx (IGO) at ultralow process temperatures (180 °C) beyond the state of the art to fabricate transistors with 10X steeper subthreshold slope and high mobility (≈18 cm2 Vs−1). Detailed characterization of IGO crystallinity, composition, and morphology, as well as measurements of its electronic density of states (DOS), show the impact of Ga-doping and reveal the limits of doping induced amorphization from hypoeutectic precursors. The ultralow process temperatures and compatibility with high-k Al2O3 dielectrics shown here indicate potential for 2D IGO to drive low-power flexible transparent electronics.  more » « less
Award ID(s):
2219991
PAR ID:
10534595
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small
ISSN:
1613-6829
Page Range / eLocation ID:
2403801
Subject(s) / Keyword(s):
2D oxides flexible transistors liquid metals thin film transistors transparent electronics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultrathin 2D metal oxides are a high‐performance class of transparent conducting materials capable of overcoming the traditional limitations of inorganic flexible electronics. The low temperature, thermodynamically favorable synthesis of 2D oxides at liquid metal interfaces offers the potential for printing these materials over large areas at unprecedented speeds with sub‐nanometer scale precision. However, these native oxides are sub‐stoichiometric and highly conductive, so new strategies are needed that can precisely engineer the electrostatics and enhance stability. In this work, the crystalline vs. amorphous phase of 2D oxides is engineered via alloying of ternary In1‐ySnyOxand ultralow deposition temperatures (120–160 °C) are afforded by In‐Sn eutectics. This approach is extended to rapid assembly of nanoscale (3–5 nm per layer) vertical 2D homojunctions with electrostatically favorable grading from high density of states front channels to lower density of states back‐channels. Detailed materials characterization reveals how this platform enhances electron mobility while improving resilience under bias‐stress in metal oxide transistors. Devices based on amorphous 2D oxide homojunctions with high‐k sol‐gel ZrOxdielectrics achieve excellent electron mobility (30 cm2/V·s), steep switching (SS of 100 mV dec−1), Ion/offof 107and 10X reduced bias‐stress shifts, presenting an ideal strategy for high‐performance flexible oxide electronics. 
    more » « less
  2. High-throughput printing-based fabrication has emerged as a key enabler of flexible electronics given its unique capability for low-cost integration of circuits based on printed thin film transistors (TFTs). Research in printing inorganic metal oxides has revealed the potential for fabricating oxide TFTs with an unmatched combination of high electron mobility and optical transparency. Here, we highlight recent developments in ink chemistry, printing physics, and material design for high-mobility metal oxide transistors. We consider ongoing challenges for this field that include lowering process temperatures, achieving high speed and high resolution printing, and balancing device performance with the need for high mechanical flexibility. Finally, we provide a roadmap for overcoming these challenges with emerging synthetic strategies for fabricating 2D oxides and complementary TFT circuits for flexible electronics. 
    more » « less
  3. Two-dimensional (2D) metal oxide semiconductors offer a superlative combination of high electron mobility and visible-range transparency uniquely suitable for flexible transparent electronics. Synthesis of these ultrathin (<3 nm) semiconductors by Cabrera-Mott oxidation of liquid metals could enable emerging device applications but requires the precise design of their electrostatics at the nanoscale. This study demonstrates sub-nanometer-level control over the thickness of semiconducting 2D antimony-doped indium oxide (AIO) by manipulating the kinetics of Cabrera-Mott oxidation through variable-speed liquid metal printing at plastic-compatible temperatures (175°C). By modulating both the growth kinetics and doping, we engineer the conductivity and crystallinity of AIO for integration in ultrathin channel transistors exhibiting exceptional steep turn-on, on-off ratios > 106 and an outstanding average mobility of 34.7 ± 12.9 cm2/Vs. This result shows the potential for kinetically controlling 2D oxide synthesis for various high-performance optoelectronic device applications. 
    more » « less
  4. Abstract 2D metal oxides (2DMOs) have recently emerged as a high‐performance class of ultrathin, wide bandgap materials offering exceptional electrical and optical properties for a wide area of device applications in energy, sensing, and display technologies. Liquid metal printing represents a thermodynamically advantageous strategy for synthesizing 2DMOs by a solvent‐free and vacuum‐free scalable method. Here, recent progress in the field of liquid metal printed 2D oxides is reviewed, considering how the physics of Cabrera‐Mott oxidation gives this rapid, low‐temperature process advantages over alternatives such as sol‐gel and nanoparticle processing. The growth, composition, and crystallinity of a burgeoning set of 1–3 nm thick liquid metal printed semiconducting, conducting, and dielectric oxides are analyzed that are uniquely suited for the fabrication of high‐performance flexible electronics. The advantages and limitations of these strategies are considered, highlighting opportunities to amplify the impact of 2DMO through large‐area printing, the design of doped metal alloys, stacking of 2DMO to electrostatically engineer new oxide heterostructures, and implementation of 2D oxide devices for gas sensing, photodetection, and neuromorphic computing. 
    more » « less
  5. The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors. 
    more » « less