HOHg(II)O•, formed from HOHg(I)• + O3, is a key intermediate in OH-initiated oxidation of Hg(0) in the atmosphere. As no experimental data is available for HOHg(II)O•, we use computational chemistry (CCSD(T)//M06-2X/AVTZ) to characterize its reactions with atmospheric trace gases (NO, NO2, CH4, C2H4, CH2O and CO). In summary, HOHg(II)O•, like the analogous BrHg(II)O• radical, largely mimics the reactivity of •OH in reactions with NOx, alkanes, alkenes, and aldehydes. The rate constant for its reaction with methane (HOHg(II)O• + CH4 → Hg(II)(OH)2 + •CH3) is about four times higher than that of •OH at 298 K. All these reactions maintain mercury as Hg(II), except for HOHg(II)O• + CO → HOHg(I)• + CO2. Considering only the six reactions studied here, we find that reduction by CO dominates the fate of HOHg(II)O• (79-93%) in many air masses (in the stratosphere and at ground level in rural, marine, and polluted urban regions) with only modest competition from HOHg(II)O• + CH4 (<15%). We expect that this work will help global modeling of atmospheric mercury chemistry.
more »
« less
Effect of Three-Dimensional-Printed Thermoplastics Used in Sensor Housings on Common Atmospheric Trace Gasses
Low-cost air quality sensors (LCSs) are becoming more ubiquitous as individuals and communities seek to reduce their exposure to poor air quality. Compact, efficient, and aesthetically designed sensor housings that do not interfere with the target air quality measurements are a necessary component of a low-cost sensing system. The selection of appropriate housing material can be an important factor in air quality applications employing LCSs. Three-dimensional printing, specifically fused deposition modeling (FDM), is a standard for prototyping and small-scale custom plastics production because of its low cost and ability for rapid iteration. However, little information exists about whether FDM-printed thermoplastics affect measurements of trace atmospheric gasses. This study investigates how five different FDM-printed thermoplastics (ABS, PETG, PLA, PC, and PVDF) affect the concentration of five common atmospheric trace gasses (CO, CO2, NO, NO2, and VOCs). The laboratory results show that the thermoplastics, except for PVDF, exhibit VOC off-gassing. The results also indicate no to limited interaction between all of the thermoplastics and CO and CO2 and a small interaction between all of the thermoplastics and NO and NO2.
more »
« less
- Award ID(s):
- 1952008
- PAR ID:
- 10535024
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 8
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 2610
- Subject(s) / Keyword(s):
- air quality low-cost sensors sensor housing 3D printing thermoplastic polymers
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The spread of the COVID-19 pandemic and consequent lockdowns all over the world have had various impacts on atmospheric quality. This study aimed to investigate the impact of the lockdown on the air quality of Nanjing, China. The off-axis measurements from state-of-the-art remote-sensing Multi-Axis Differential Optical Absorption Spectroscope (MAX-DOAS) were used to observe the trace gases, i.e., Formaldehyde (HCHO), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2), along with the in-situ time series of NO2, SO2 and Ozone (O3). The total dataset covers the span of five months, from 1 December 2019, to 10 May 2020, which comprises of four phases, i.e., the pre lockdown phase (1 December 2019, to 23 January 2020), Phase-1 lockdown (24 January 2020, to 26 February 2020), Phase-2 lockdown (27 February 2020, to 31 March 2020), and post lockdown (1 April 2020, to 10 May 2020). The observed results clearly showed that the concentrations of selected pollutants were lower along with improved air quality during the lockdown periods (Phase-1 and Phase-2) with only the exception of O3, which showed an increasing trend during lockdown. The study concluded that limited anthropogenic activities during the spring festival and lockdown phases improved air quality with a significant reduction of selected trace gases, i.e., NO2 59%, HCHO 38%, and SO2 33%. We also compared our results with 2019 data for available gases. Our results imply that the air pollutants concentration reduction in 2019 during Phase-2 was insignificant, which was due to the business as usual conditions after the Spring Festival (Phase-1) in 2019. In contrast, a significant contamination reduction was observed during Phase-2 in 2020 with the enforcement of a Level-II response in lockdown conditions i.e., the easing of the lockdown situation in some sectors during a specific interval of time. The observed ratio of HCHO to NO2 showed that tropospheric ozone production involved Volatile Organic Compounds (VOC) limited scenarios.more » « less
-
Abstract. Fluxes of nitrogen oxides (NOx=NO+NO2) and carbon dioxide (CO2) were measured using eddy covariance at the British Telecommunications (BT) Tower in central London during the coronavirus pandemic. Comparing fluxes to those measured in 2017 prior to the pandemic restrictions and the introduction of the Ultra-Low Emissions Zone (ULEZ) highlighted a 73 % reduction in NOx emissions between the two periods but only a 20 % reduction in CO2 emissions and a 32 % reduction in traffic load. Use of a footprint model and the London Atmospheric Emissions Inventory (LAEI) identified transport and heat and power generation to be the two dominant sources of NOx and CO2 but with significantly different relative contributions for each species. Application of external constraints on NOx and CO2 emissions allowed the reductions in the different sources to be untangled, identifying that transport NOx emissions had reduced by >73 % since 2017. This was attributed in part to the success of air quality policy in central London but crucially due to the substantial reduction in congestion that resulted from pandemic-reduced mobility. Spatial mapping of the fluxes suggests that central London was dominated by point source heat and power generation emissions during the period of reduced mobility. This will have important implications on future air quality policy for NO2 which, until now, has been primarily focused on the emissions from diesel exhausts.more » « less
-
Fused Deposition Modeling (FDM) is a low-cost method of 3D printing that involves stacking horizontal layers of plastic. FDM is used to produce tactile graphics and interfaces for people with visual impairments. Unfortunately, the print orientation can alter the structure and quality of braille and text. The difference between printing braille vertically and horizontally has been documented. However, we found no comprehensive study of these angles or the angles in between, nor any study providing a quantitative and qualitative user evaluation. We conducted two mixed-methods studies to evaluate the performance of braille printed at different angles. We measured reading time and subjective preference and performed a thematic analysis of participants' responses. Our participants were faster using and preferred 75° and vertical braille over horizontal braille. These results provide makers with guidelines for creating models with readable 3D-printed braille.more » « less
-
Abstract Wildfires have become larger and more frequent because of climate change, increasing their impact on air pollution. Air quality forecasts and climate models do not currently account for changes in the composition of wildfire emissions during the commonly observed progression from more flaming to smoldering combustion. Laboratory measurements have consistently shown decreased nitrogen dioxide (NO2) relative to carbon monoxide (CO) over time, as they transitioned from more flaming to smoldering combustion, while formaldehyde (HCHO) relative to CO remained constant. Here, we show how daily ratios between column densities of NO2versus those of CO and HCHO versus CO from the Tropospheric Monitoring Instrument (TROPOMI) changed for large wildfires in the Western United States. TROPOMI‐derived emission ratios were lower than those from the laboratory. We discuss reasons for the discrepancies, including how representative laboratory burns are of wildfires, the effect of aerosols on trace gas retrievals, and atmospheric chemistry in smoke plumes.more » « less
An official website of the United States government

